4west houston
 MOBILITYPLAN

OCTOBER 2015

twest
houston

west

M O B ILITY PLAN
OCTOBER 2015

LEAD AGENCY:

Houston-Galveston Area Council (H-GAC)

PROJECT MANAGER

Stephan Gage

CONSULTANT TEAM

Walter P. Moore, Inc.
Design Workshop
AIA
Bay-IBI Group Architect
Bicycle Solutions
CDS Market Research
CJ Hensch
CORE Conceptions

FUNDING PARTNERS:

City of Houston
The Energy Corridor District
Memorial Management District
Westchase Management District

STEERING COMMITTEE:
Stephan Gage H-GAC
Chris Van Slyke H-GAC
David Wurdlow H-GAC
Anita Hollmann
Amar Mohite Jeffrey Weatherford Clark Martinson Irma Sanchez Pat Walters

Charles Airiohudin
Edmund Petry
Charles Dean
Perri D'Armond
Maureen Crocker

City of Houston-Planning Dep City of Houston- Planning Dept City of Houston-Public Works Dept The Energy Corridor District
Westchase Management District Memorial Management Distria TxDOT
METRO
Harris County-Engineering Dept West Houston Association Gulf Coast Rail District

TRANSPORTATION POLICY COUNCIL:

Honorable Stephen Costello - Chairman Honorable Matt Sebesta - 1st Vice Chair Honorable Darrell Morrison - 2nd Vice Chair Honorable Tom Reid - Secretary
Honorable Ed Emmett - Past Chair Honorable David McCartney Scott Taylor
Honorable Ralph McMorris
Honorable Dwight Boykins
Dale Rudick, P.E.
Honorable Tim Paulissen
Scott Elmer, P.E.
Hon. Harish Jajoo
Doug Kneupper, P.E
Honorable Robert A. Fry, Jr
Honorable Rusty Senac
Honorable James Patterson
Honorable Kenneth Clark
Honorable Steve Radack
Honorable Eddie Lowery
Honorable Charlie Riley
Honorable John Amsler
Gilbert Garcia
Jack Steele
Quincy Allen, P.E.
Tucker Ferguson, P.E
Janiece Longoria
Bert Keller

EX-OFFICIO MEMBERS:
Brenda Mainwaring
Hugh McCulley
Honorable Allen Fletche
Honorable Sylvia Garcia

City of Houston Brazoria County City of Pasadena City of Pearland Harris County City of Baytown City of Conroe City of Galveston City of Houston City of Houston City of League City City of Missouri City City of Sugar Land City of Texas City Smaller Cities, Harris County Chambers County Fort Bend County Galveston County Harris County Liberty County Montgomery County Waller County Metropolitan Transit Authority H-GAC
TxDOT Houston District TxDOT Beaumont District Other Transportation Interests Gulf Coast Rail District

Freight Rail Interests
Freight Rail Interests
8-County Region
8-County Region

TABLE OF CONTENTS

INTRODUCTION 1
1.1 PURPOSE AND BACKGROUND 2
2 GOAI S AND OBIECTIVES 3
1.3 VISION 4
EXISTING CONDITIONS 7
21 STUDY AREA CHARACTER 8
2.2 DEMOGRAPHICS 12
2.3 LAND USE 16
2.4 SPECIAL DISTRICTS26
2.5 PROPOSED DEVELOPMENT
28
2.6 ROADWAYS AND ROADWAY SAFETY38
. 7 RANSI AND ALIERNATVEMODES 46
2.9 RAIL FACILITIES 5
210 REGULATIONS, POLICIES AND STRATEGIC PLANS 54
PUBLIC ENGAGEMENT 57
3.1 PUBLIC INVOLVEMENT 58
3.2 STEERING COMMITTEF 59
3.3 PROJECT WEBSITE 60
3.4 PUBLIC MEETINGS 61
ASSESSMENT 67
4.1 GROWTH SCENARIOS 68
4.2 PLANNED IMPROVEMENTS 79
4.3 NATURE OF FUTURE GROWTH 85
4.4 CONTEXT SENSITIVE DESIGN 88
IMPROVEMENT OPPORTUNITIES 91
5.1 BUILT ENVIRONMENT 92
5.2 SERVICE OPPORTUNITIES 111
5.3 POLICIES 124
IMPLEMENTATION TOOLBOX 127
6.1 FUNDING 128
APPENDIX A PUBLIC COMMENTS 131
APPENDIX B SURVEY RESULTS 145
APPENDIX C METRO PREVIOUS LOCAL SERVICE 151
APPENDIX D METRO NEW BUS NETWORK ROUTES 183
APPENDIX E METRO MARKET AND DEVELOPMENT INDEX METHODOLOGY 209
APPENDIX F EXISTING AND FUTURE TRAFFIC VOLUMES 213
APPENDIX G IMPLEMENTATION TOOLS 221

LIST OF FIGURES

FIGURE 21 STUDY SUB-AREAS 8
FIGURE 2.2 STUDY AREA9
FIGURE 2.3 POPULATION GROWTH PERCENTAGE 10
FIGURE 2.4 JOB GROWTH PERCENTAGE 10
FIGURE 2.5 SALES TAX GENERATING BUSINESSES 10
FIGURE 2.6 GROSS SALES TAX COMPARISON 10
FIGURE 2.7 STUDY AREA EASEMENTS AND VACANT PARCELS 11
FIGURE 28 POVERTY RATE 13
FIGURE 2.9 ZERO AUTO HOUSEHOLDS 13
FIGURE 2.10 POPULATION DENSITY (PEOPLE PER SQ. MILE) 13
FIGURE 2.11 EMPLOYMENT DENSITY (JOBS PER SQUARE MILE) 13
FIGURE 2.12 JOB CENTERS, HOUSEHOLDS AND LOS RATIOS 14
FIGURE 2.132010 POPULATION DENSITY 15
FIGURE 2.142010 EMPLOYMENT DENSITY 15
FIGURE 2.15 STUDY AREA ETHNICIT 15
FIGURE 2.16 STUDY AREA LAND USE PERCENTAGES 16
IGURE 2.17 NORTHWEST QUADRANT LAND USE 17
FIGURE 2.18NORTHEAST QUADRANT LAND USE 18
FIGURE 210 SOUTHWEST QUADRANT LAND USE 19
FIGURE 2.20 SOUTHEAST QUADRANT LAND USE 20
FIGURE 2.21 MANAGEMENT DISTRICTS 21
FIGURE 2.22 TIRZ DISTRICTS 23
FIGURE 2.23 SUPER NEIGHBORHOODS 24
IGURE 2.24 WESTCHASE FMPIOYEE HOME ZIP CODES 25
FIGURE 2.25 ENERGY CORRIDOR DISTRICT EMPLOYEE HOME ZIP CODES 25
FIGURE 2.26 MEMORIAL DISTRICT EMPLOYEE HOME ZIP CODES 25
FIGURE 2.27 PROPOSED MAJOR DEVELOPMENTS JANUARY 2015 27
FIGURE 228 STUDY AREA ROADWAY CLASSFICATIONS 28
FIGURE 2.29 VEHICLE CRASHES PER YEAR 29
FIGURE 2.30 STUDY AREA ROADWAY 2014 ADT 30
FIGURE 2.31 STUDY AREA ROADWAY 2014 LOS32
FIGURE 2.33 SPATIAL DISTRIBUTION OF TRAFFIC ACCIDENTS (2008-2013 33
FIGURE 2.34 STUDY AREA ACCIDENT COUNTS BY HOUR OF DAY* 34
FIGURE 2.35 STUDY AREA ACCIDENT COUNTS BY WEEKDAY 34
FIGURE 2.36 STUDY AREA ACCIDENT SEVERITY 34
FIGURE 2.37 STUDY AREA ACCIDENT INTERSECTION RELATIONSHIP 34
FIGURE 2.38 STUDY AREA ACCIDENT ROADWAY TYPE 34
FIGURE 2.39 ROADWAY CRASH RATE 35
FIGURE 2.40 PUBLIC TRANSIT SERVICE AREAS 38
FIGURE 2.41 PREVIOUS METRO BUSNETWORK 39
FIGURE 2.42 NEW METRO BUS NETWORK 40
FIGURE 2.43 PREVIOUS METRO BUS NETWORK ACCESSIBILITY 42
FIGURE 2.44 NEW METRO BUS NETWORK ACCESSIBILITY 43
FIGURE 2.45 FORT BEND COUNTY TRANSIT SERVICE TRIPS 44
FIGURE 2.46 ANNUAL MEMORIAL CITY SHUTTLE SERVICE RIDERSHP 44
FIGURE 2.47 EXISTING AND PROPOSED BICYCLE AND PEDESTRIAN FACILITIE 47
FIGURE 2.48 ANNUAL BICYCLE AND PEDESTRIAN CRASHES48
FIGURE 2.49 BICYCLE AND PEDESTRIAN CRASH FREQUENCY BY WEEKDAY 48
FIGURE 2.50 BICYCLE AND PEDESTRIAN CRASH FREQUENCY BY MONTH 48
FIGURE 2.51 BICYCLE AND PEDESTRIAN CRASH FREQUENCY BY HOUR 49
FIGURE 2.52 BICYCLE AND PEDESTRIAN CRASH FREQUENCY BY AGE GROUP 49
FIGURE 253 PEDESTRIAN CRASH FREQUENCY BY ROADWAY LOCATION 49
FIGURE 2.54 BICYCLE CRASH FREQUENCY BY ROADWAY LOCATION 49
FIGURE 255 PEDESTRIAN CRASH SEVERITY 49
FIGURE 2.56 BICYCLE CRASH SEVERITY 49
FIGURE 2.57 BICYCLE CRASH SPATIAL DISTRIBUTION (2008-2013) 50
FIGURE 2.58 PEDESTRIAN CRASH SPATIAL DISTRIBUTION (2008-2013) 51
FIGURE 2.59 RAILWAY DISTRIBUTION 53

LIST OF FIGURES

FIGURE 31 PROJECT WEBSITE 60
FIGURE 3.2 MULTI-LINGUAL PUBLIC MEETING FLYERS 61
FIGURE 3.3 PUBLIC MEETING MAP 63
FIGURE 4.1 SCENARIO 1 JOB GROWTH 68
FIGURE 4.2 SCENARIO 1 POPULATION GROWTH 68
FIGURE 4.3 SCENARIO 1 JOB GROWTH 68
FIGURE 4.4 SCENARIO 1 POPULATION GROWTH 68
FIGURE 4.5 SCENARIO 2 JOB GROWTH69
FIGURE 46 SCENARIO 2 POPU ATION GROWTH 69
FIGURE 4.7 SCENARIO 2 JOB GROWTH 69
FIGURE 4.8 SCENARIO 2 POPULATION GROWTH 69
FIGURE 4.9 SCENARIO 3 JOB GROWTH 71
FIGURE 4.10 SCENARIO 3 POPULATION GROWTH 71
FIGURE 4.11 SCENARIO 3 JOB GROWTH 71
FIGURE 4.12 SCENARIO 3 POPULATION GROWTH 71
FIGURE 4.13 SCENARIO 4 JOB GROWTH 72
FIGURE 4.14 SCENARIO 4 POPULATION GROWTH 72
FIGURE 4.15 SCENARIO 4 JOB GROWTH 72
FIGURE 4.16 SCENARIO 4 POPULATION GROWTH 72
FIGURE 4.17 INTERSECTION LEVEL OF SERVICE 75
FIGURE 4.182025 PREDICTED LEVEL OF MOBILITY 76
FIGURE 4.192040 PREDICTED LEVEL OF MOB\| ITY 77
FIGURE 4.20 HOUSTON RESIDENTIAL PREFERENCES (SOURCE: RICE UNIVERSITY 78
FIGURE 4.21 CURRENT TIP AND RTP PROJECTS 81
FIGURE 4.22 CITY OF HOUSTON AND FORT BEND COUNTY CIP PROJECTS (2015) 83
FIGURE 4.232014 SELECT ZONE ANALYSIS 85
FIGURE 4.24 WORK TRIP ATTRACTIONS 86
FIGURE 4.25 NON-WORK TRIP ATTRACTIONS 87
FIGURE 5.1 MTFP ADDITIONS93
FIGURE 5.2 COLLECTOR STREETS 95
FIGURE 5.3 ROADWAY PROJECTS 98
FIGURE 5.4 INTERSECTION IMPROVEMENTS 101
FIGURE 5.5 BICYCLE AND PEDESTRIAN FACILITY FEASIBILITY SECTION A1 102
IGURE 5.6 BICYCLE AND PEDESTRIAN FACILITY FEASIBILITY SECTION A2 103
FIGURE 5.7 BICYCLE AND PEDESTRIAN FACILITY FEASIBILITY SECTION A 104
FIGURE 5.8 BICYCLE AND PEDESTRIAN FACILITY FEASIBILITY SECTION B 105
FGURE 5.9 BICYCLE AND PEDESTRIAN FACILITY FEASIBILITY SECTION B2 106
FIGURE 5.10 BICYCLE AND PEDESTRIAN FACILITY FEASIBILITY SECTION B3 107
FIGURE 5.11 BICYCLE AND PEDESTRIAN FACILITY FEASIBILITY SECTION C1 108
FIGURE 5.12 BICYCLE AND PEDESTRIAN FACILITY FEASIBILITY SECTION C2 109
FIGURE 5.13 BICYCLE AND PEDESTRIAN FACILITY FEASIBILITY SECTION C3 110
FIGURE 5.14 WESTCHASE DISTRICT CIRCULATOR PLAN114
FIGURE 5.15 ELDRIDGE AND WESTHEIMER PROPOSED IMPROVEMENTS 115
FIGURE 5.16 GESSNER AND WESTHEIMER PROPOSED IMPROVEMENTS 116
FIGURE 5.17 PROPOSED LOCAL BUS SERVICE 119
FIGURE 5.18 PROPOSED EXPRESS SERVICE 120
FIGURE 519 PROPOSED FACIITIES 121
FIGURE 5.20 PROPOSED FBCT WESTPARK PARK \& RIDE 122
FIGURE 5.21 PROPOSED ENERGY CORRIDOR CIRCULAR SERVICE 123
FIGURE 6.1 WESTCHASE 380 AGREEMENT BOUNDARY128

HAC

LIST OF TABLES

ABLE 2.1 - STUDY AREA CHARACTERISTICS 8
TABLE 2.2 - STUDY AREA IN COMPARISON TO MAJOR U.S. CITIES 8
TABLE 2.3 - POPULATION GROWTH RATES 12
TABLE 2.4 - POPULATION PROJECTIONS 12
TABLE 2.5 - POPULATION, ETHNICITY AND HOUSING CHARACTERISTICS 12
TABLE 2.6 - POVERTY RATES 13
TABLE 2.7 - PROJECTED EMPLOYMENT 13
TABLE 2.8 - EMPLOYMENT CATEGORIES 15
ABLE 2.9 STUDY AREA LAND USE 16
TABLE 2.10 - PROPOSED MAJOR DEVELOPMENTS AS OF JANUARY 2015 27
TABLE 2.11 - MOST CONGESTED ROADS WITHIN STUDY AREA 29
TABLE 2.12 - STUDY AREA VEHICLE CRASH TOTALS 29
TABLE 2.13 - CRASH SEVERITY 29
TABLE 214 - VEHICLE COLLISON DYNAMICS 29
TABLE 2.15 - URBAN TRAFFIC CRASHES PER 100 MILLION VEHICLE MILES 29
TABLE 2.16-HIGHWAY AND MAJOR ROADWAY CRASH RATES 36
TABLE 2.16B - CRASH RATES BY ROAD TYPES (2012) 36
TABLE 2.17-2013 METRO RIDERSHIP AND PERFORMANCE METRICS (PREVIOUS NETWORK)TABLE 2.18 - METRO NEW BUS NETWORK ROUTES (OCTOBER 2014)44
TABLE 2.19 - TRANSIT ACCESSIBILITY 45
TABLE 2.20 - WEST HOUSTON BICYCLE \& PEDESTRIAN FACILITIES 46
TABLE 2.21 - ANNUAL BICYCLE CRASHES 48
TABLE 2.22- ANNUAL PEDESTRIAN CRASHES 48
ABLE 2.23 - BICYCLE CRASH SEVERITY 48
TABLE 2.24 - PEDESTRIAN CRASH SEVERITY 48
ABLE 2.25 - CITY OF HOUSTON DEVELOPMENT ORDINANCES 54
TABLE 2.26 - SELECT STATE OF TEXAS ECONOMIC DEVELOPMENT PROGRAMS 54
TABLE 41- URBAN CENTER CRITERIA 74
TABLE 4.2 - URBAN CENTER CHARACTERISTICS 74
TABLE 4.3 - INTERSECTION LEVEL OF SERVICE 75
TABLE 4.4 - CURRENT RTP PROJECTS 80
TABLE 4.5 - CURRENT TIP PROJECTS 80
TABLE 4.6 COH CIP PROJECTS 82
TABLE 4.7 - PRIOR TRANSPORTATION STUDIES 84
TABLE 4.8 - PRIOR TRANSPORTATION STUDY RECOMMENDATIONS 84
TABLE 51 - MTFP ADDITIONS 93
TABLE 5.2 - COLLECTOR STREET NOMINATIONS 95
TABLE 5.3 ROADWAY PROJECT RECOMMENDATIONS 99
TABLE 5.4 - TRANSIT ENHANCEMENTS 117
TABLE E-1:SUMMARY OF MARKET AND DEVELOPMENT DENSITY INDEX COMPONENTS 211
TABLE E-2 SUMMARY OF METRO SERVICE AREA EMPLOYMENT 211

I wish to express my sincere thanks to those who assisted in the completion of this plan In particular, special thanks go out to the funding partners and other members of the Steering Committee for their many hours of hard work, critical feedback, and imaginative suggestions.

In addition, I would like to thank the following H-GAC staff members for all their assistance with this project:

Kelly Porter
Thomas Gray
Jeff Kaufman
Sharon Ju
Michael Onuogu
Heng Wang
Shixin "David" Gao
Eric Boulet
Keith Garber

Finally, thanks to Shirley Kaatz and Veronica "Ronnie" Harycki from the Texas Comptroller of Public Accounts Department for answering all my requests for tax data.
—Stephan Gage

houst

INTRODUCTION

Hox

1.1
 PURPOSE AND BACKGROUND

The Houston-Galveston Area Council (H-GAC) is the Metropolitan Planning Organization (MPO) for the Houston-Galveston 8-County Transportation Management Area (TMA), hereafter referred to as the "Region". The Region includes Chambers, Brazoria, Fort Bend, Galveston, Harris, Liberty, Montgomery, and Waller Counties.

Over the past decade, the H-GAC region has grown by 1.2 million residents to equal a population near 6 million. It is anticipated that population growth will continue and an additional three million people will reside in the Region within the next 25 years. This growth has and will impact day-to-day activities including general mobility, access to jobs and homes, availability of amenities, impacts on the environment, and overall quality of life.

To address mobility issues arising from growth within the Region, H-GAC initiated the Subregional Planning Initiative (SPI) in 2008. The goal of the SPI is to facilitate the planning process in sub-regional areas of the TMA in order to create viable projects for the Transportation Improvement Plan (TIP) that reflect the goals of the Regional Transportation Plan (RTP). SPI is the integration of transportation and land use planning in recognition of the need for a more holistic, strategic approach to planning. SPI demonstrates how a balanced approach including added capacity, operations and demand management will be more cost-effective in achieving our goals than the current emphasis on added capacity projects.

The Greater West Houston Subregional Planning Initiative, also known as the West Houston Mobility Plan, is the seventh sub-regional planning initiative commissioned by H-GAC since 2008. The plan is intended to facilitate for the orderly provision of infrastructure to accommodate future population and employment growth in West Houston. The plan will include the conceptualization of optimal land use, identification of needed transportation improvements, and the development of multimodal transportation strategies.

1.2 GOALS AND OBJECTIVES

The vision, goals, and objectives of the study reflect the dynamic nature and progressive spirit of West Houston. Big ideas are what will be required to manage the ever increasing population and job growth projected in the Study Area. These goals guide the development of the study recommendations.

PROJECT GOALS

- Develop growth projections and alternative urban design and development scenarios
- Achieve a consensus on the vision and growth scenario(s) of the Greater West Houston Region
- Improve mobility for all modes of transportation, while balancing the quality of life for existing and future residents within the Study Area
- Recommended best practices for transportation infrastructure and urban design to maximize multimodal access to development DW/IDI
- Protect environmentally sensitive areas and green spaces
- Develop a sustainable transportation plan to help guide transportation investments within this area
- Develop feasible and practical recommendations that can be easily integrated into other local and regional plans

PROJECT OBJECTIVES

- Define, characterize and quantify the region's existing and projected demographics, development patterns, transportation facilities, services and usage
- Integrate protection of environmentally sensitive areas and green spaces, existing land uses and future development scenarios into the transportation planning process
- Identify and assess by magnitude and mode share, the major travel markets that play a key role in impacting travel patterns
- Evaluate the ability of the existing transportation system to efficiently and effectively serve current and projected travel needs
- Examine the benefits and impacts of the proposed improvements identified by this study in the context of the regional transportation system
- Evaluate, refine and prioritize the proposed transportation improvements and modal alternatives
- Refine and integrate the multimodal street classification as proposed in the City of Houston Mobility Planning initiative for all streets

DESIRED PROJECT OUTCOMES

- Achieve a consensus on goals and objectives through the stakeholder, Steering Committee and public meetings
- Develop and identify a preferred sub-regional development scenario to guide transportation investment
- Provide transportation and land use scenario visualizations that help stakeholders and the public make informed decisions
- Incorporate best practices to optimize transportation investments
- Identify concepts to help increase transit ridership
- Implement identified strategies
- Create a list of recommendations for integration into local and regional plans
- Provide a prioritized list of short-range, mid-range and long-range improvements with costs
- Establish a plan to promote quality communities to help attract new residents and businesses to the region and promote economic success
- Develop a multimodal street classification methodology and recommended classification report for all streets

1.3
 VISION

Change is an essential component of strategic planning. Articulating the purpose and value of change is important for garnering support and allaying concerns. Recommendations of this study represent major change in many ways for the residents and businesses of West Houston And so, below is articulated their purpose and value.

The Greater West Houston Sub-regiona Planning Initiative Study will enhance the quality of life in West Houston by advancing recommendations that encourage the development and expansion of a range of viable transportation modes for work and leisure travel, as well as sustainable land development that complements the area's transportation infrastructure.

Correspondingly, the vision statements of the study's Funding Partners echo this sentiment.

THE ENERGY CORRIDOR MANAGEMENT DISTRICT
Our vision is to be internationally recognized as a high-quality place in which to work live and invest. Our mission is to enhance our community's quality of life and sense of place by implementing mobility, public safety, and streetscape and business development initiatives.

MEMORIAL MANAGEMENT DISTRICT
The Memorial Management District and
progressive developers are looking beyond today and have a plan to keep the area thriving for the years ahead

CITY OF HOUSTON
Houston, the 4th largest city in the United States, is a dynamic, growing city, rich in culture and diversity. The Planning and Development Department's mission is to work to ensure that it remains a vibrant and sustainable city by partnering with decision makers and the community to balance a spectrum of needs and interests while addressing the dynamics of growth and change.

INTRODUCTION

"VISION WITHOUT ACTION IS MERELY A DREAM. ACTION WITHOUT VISION JUST PASSES THE TIME. VISION WITH ACTION CAN CHANGE THE WORLD."

- JOEL A. BARKER

EXISTING CONDITIONS

$$
\overline{H A C}
$$

2.1
 STUDY AREA CHARACTER

The boundaries of the West Houston Study Area include portions of unincorporated Harris and Fort Bend counties, the City of Houston and some of the cities within the enclave known as The Villages. The Study Area is traversed by several major creeks and bayous, including Brays and Buffalo bayous, Bear Creek, South Mayde Creek, Mason Creek, and Langham Creek. The Addicks and Barker Reservoirs are prominent physical and environmental features in the Study Area (Figure 2.2).

The Study Area has three distinct sub-areas with different physical characteristics: the undeveloped Addicks and Barker Reservoirs the more developed "inner" sub-area to the east and southeast, and the less developed mostly residential "outer" sub-area to the north and west. The inner and outer regions are roughly separated by SH 6 (Figure 2.1). The reservoirs were constructed in the 1940's to help control flooding in the Houston area. They are traversed by few roads and trails, and have only a few outdoor-oriented land uses such as playing fields, golf courses, dog parks, and shooting ranges. The inner sub-area contains The Energy Corridor District, the Westchase District, Memorial Management District, and the office and light industrial areas close to US 290 and Beltway 8 . It has a mix of single-family residential, multifamily, commercial/retail strips, large shopping
centers, a regional shopping mall, major employment centers that including mid- and high-rise office, and several partly or fully developed trail networks.

The outer sub-area contains mostly singlefamily subdivisions, primary and secondary schools, and some local parks. Commercia development is mostly retail strips with a few larger centers and a regional shopping mall. Its few denser commercial, light industrial, health care and office uses are found along or near SH 6 and IH 10. Much of the outer sub-area is outside Houston's city limits but within its Extra-Territorial Jurisdiction.

The Study Area is one of the most densely populated, economically dynamic, culturally diverse and ecologically sensitive locations in the Houston-Galveston area. Table 2.1 summarizes some of West Houston's major demographic and transportation infrastructure characteristics

With 12 percent of the region's population and 14 percent of its jobs, the Study Area is a major socio-economic engine. The size and population of the Study Area place it on par with other major US cities (Table 2.2). As shown in Figures 2.3 and 2.4, the Study Area's population and job growth rates are comparable to those for the City of Houston and the Region.

TABLE 2.2 - STUDY AREA IN COMPARISON TO			
MAJOR U.S. CITIES			
City/Area	State	Land area (sq mi)	Population (2010)
West Houston	Texas	180.9	618,953
Denver	Colorado	153.0	600,158
Las Vegas	Nevada	135.8	583,756
Portland	Oregon	133.4	583,776
Atlanta	Georgia	133.2	420,003
Milwaukee	Wisconsin	96.1	594,833
Seattle	Washington	83.9	608,660
Baltimore	Maryland	80.8	620,961

Figure 2.1 Study Sub-areas

Legend

City of Houston
City of Houston ETJ
0

EXISTING CONDITIONS

Although the Study Area has only six percent of the businesses that collect sales tax in Harris and Fort Bend counties (Figure 2.5), it generated 28 percent of the gross sales in Fort Bend and Harris counties in 2013. Figure 2.6 compares the gross sales of the Study Area with these of the City of Houston, and Harris and Fort Bend counties from 2004 through 2013.

Figure 2.7 illustrates the current right-ofway (R.O.W.) and easements that exist within the Study Area. There are 103,465 acres of R.O.W. parcels and 341 miles of easements in the Study Area. These parcels and easements, as well as and bayous and creeks within the Study Area, represent opportunities to enhance the bicycle and pedestrian infrastructure in West Houston.

Figure 2.3 Population Growth Percentage

Figure 2.4 Job Growth Percentage

Figure 2.5 Sales Tax Generating Businesses

Figure 2.6 Gross Sales Tax Comparison

EXISTING CONDITIONS

2.2
 DEMOGRAPHICS

West Houston has grown tremendously over the past 65 years. Table 2.3 compares the population growth of West Houston to that of the City of Houston and Harris County since 1950.

The Study Area population was 683,518 persons (2010), which represent 12 percent of the Region's population. A 35 percent increase in population to 924,101 persons is projected by 2040 (Table 2.4). The projected growth rate is slightly lower than, but still comparable to, the City of Houston's growth rate of 38 percent.

The Study Area population density is equivalent to the City of Houston and approximately five times that of the Region as a whole (Figure 2.10). Area population density is expected to increase by 35 percent by 2040, which is again comparable to the City of Houston's projected 38 percent.

The Study Area's ethnic diversity mirrors that of the Region as a whole with comparable percentages of major ethnic groups (Table 2.5). Likewise, housing occupancy in the Study Area is also comparable to the Region, but with a lower percentage of vacant housing units. This lower vacancy rate is indicative of the high demand for housing in the Study Area due to its strong

TABLE 2.3 - POPULATION GROWTH RATES						
Year	West Houston	Change (\%)	City of Houston	Change (\%)	Region	Change (\%)
1950	4,665	NA	596,163	NA	1,070,387	NA
1960	22,537	383.11\%	938,219	57.38\%	1,583,097	47.90\%
1970	79,240	251.60\%	1,233,505	31.47\%	2,183,285	37.91\%
1980	258,704	226.48\%	1,595,138	29.32\%	3,121,808	42.99\%
1990	356,200	37.69\%	1,810,532	13.50\%	3,733,121	19.58\%
2000	485,035	36.17\%	2,076,991	14.72\%	4,671,571	25.14\%
2010	683,518	40.92\%	2,272,110	9.39\%	5,894,009	26.17\%

Year	TABLE 2.4 - POPULATION PROJECTIONS		

Population	Wes Houston	Percent	City of Houston	Percent	8-County Region	Percent
Total Population	683,518		2,057,617		5,887,189	
Households	244,954		781,407		3,631,503	
Average Household Size	2.7		2.7		2.8	
Ethnicity						
White Not Hispanic	230,636	37\%	537,272	26\%	2,318,265	39\%
Black Not Hispanic	91,560	15\%	472,653	23\%	993,091	17\%
Asian Not Hispanic	66,482	11\%	124,693	6\%	384,324	7\%
American Indian Not Hispanic	1,555	0.30\%	4,081	0.20\%	16,601	0.30\%
Some Other Race Not Hispanic	1,635	0.30\%	4,064	0.20\%	725,539	12\%
Two or More Races Not Hispanic	9,983	2\%	67,088	3\%	178,247	3\%
Hispanic	217,102	35\%	892,370	43\%	2,089,095	35\%
Housing						
Total Housing Units	247,773		874,058		2,279,035	
Housing Units Occupied	225,092	91\%	767,251	88\%	2,050,324	90\%
Housing Units Vacant	22,681	9\%	106,807	12\%	228,711	10\%

Figure 2.9 Zero Auto Households

- Region
- West Houston
- City of Houston

Legend
\square Sounties
\square counties

0.10%
\square

0

Figure 2.11 Employment Density (jobs per square mile)
population growth. The poverty rate for the Study Area is less than the City of Houston Harris County, and the Region (Table 2.6). Figure 2.8 shows that the Study Area contains a fewer areas with high poverty rates than the Region. The Study Area also has fewer households without access to automobiles (Figure 2.9),

TABLE 2.6-POVERTY RATES		
Location	Population	Percentage
West Houston	81,516	13.40%
City of Houston	456,791	22.20%
Fort Bend County	48,097	8.30%
Harris County	725,651	17.90%
Region	952,553	15.90%
Source: H-GAC \& US Census		

The Study Area includes three major employment centers: The Energy Corridor, the Westchase District and the Memorial District. There were 387,509 jobs
throughout the Study Area in 2010, which was 14 percent of the Region's employment (See Table 2.7). Employment in the Study Area is projected to grow by 86 percent to 722,073 by 2040. West Houston's projected employment growth is expected to exceed the expected employment growth for both the City of Houston (44\%) and the Region (53\%) for the same period.

TABLE 2.7 - PROJECTED EMPLOYMENT			
Year	West Houston	City of Houston	Region
1990	186,572	1,251,342	1,837,310
2000	222,525	1,372,573	2,178,567
2010	387,509	1,673,401	2,742,878
2020	527,780	1,937,114	3,309,842
2030	648,708	2,192,043	3,750,311
2040	722,073	2,403,017	4,202,062

EXISTING CONDITIONS

houst

Figure 2.132010 Population Density

Figure 2.142010 Employment Density
 Legend
 $\square_{>}^{\text {5,0,000 } 15,0000}$ 0

Figure 2.15 Study Area Ethnicity

As shown in Figure 2.11, projected employment density in the Study Area has grown to rival employment density in the City of Houston, and is now over six times the employment density of the Region. This high concentration of jobs is an important consideration for future transportation improvements within the Study Area. West Houston also has a higher concentration of office jobs than the City of Houston and the Region (Table 2.8).

| TABLE 2.8-EMPLOYMENT CATEGORIES | |
| :--- | ---: | ---: | ---: |

Govermment
Figure 2.12 summarizes the relationship between household densities, job concentration, and current levels of mobility in West Houston. As shown in the figure, households in West Houston are heavily concentrated in the western and northwest portions of the Study Area. Jobs are primarily located in and around the major employment centers. Many of the major roadways leading to employment centers are experiencing severe congestion.

Figures 2.13 and 2.14 show 2010 Population and Employment densities, respectively, for the Houston Area as compared to the Study Area. Likewise, Figure 2.15 compares the ethnic diversity of the Houston Area to the Study Area.

EXISTING CONDITIONS

2.3
 LAND USE

The land use maps on the next pages (Figures 2.17 through 2.20) reveal patterns of land use that have developed in the Study Area, despite the absence of zoning regulations. An area locator for the land use maps is shown in the top right corner of each map.
Retail, commercial and office uses are generally concentrated along major highway corridors, especially in the southern portions of the Study Area. Industrial land uses are concentrated in the northeast portion of the Study Area, where large tracts of land and rail facilities are available. The northwest portion of the Study Area, which has seen the most recent residential development, still has abundant undeveloped land and some agricultural uses.

The land use maps also make apparent the barrier that Addicks and Barker reservoirs pose to mobility and connectivity. The reservoirs totaling 26,000 acres comprise more than one quarter (26 percent) of the land in the Study Area (and 75 percent of all open space), and are situated at the junction of two of major roadways, I 10 and State Hwy 6. Only State Hwy 6, Eldridge Parkway and Clay Road traverse Addicks Reservoir, and Westheimer Parkway is the only road that crosses Barker Reservoir.

The breakdown of land used by type is shown in Figure 2.16, and listed in Table 2.9. Only 10 percent of the Study Area is undeveloped and just two percent is used for agricultural production. The small percentage of available land suggests that West Houston will develop in a denser pattern in the future. The Study Area is currently subject to rapid redevelopment due to growth and the age of existing properties.

TABLE 2.9 STUDY AREA LAND USE		
Land Use Category	Parcels	Acres
Agriculture Production	36	2,285
Commercial	2,564	5,371
Industrial	2,219	7,208
Multi-Family Residential	1,644	4,369
Office	720	2,149
Park \& Open Spaces	3,837	34,366
Public \& Institutional	582	4,646
Single-Family Residential	146,033	27,886
Transportation \& Utility	450	1,308
Undeveloped	7,518	10,058
TOTALS	165,603	99,645
Source: HCAD		

- Public (5
- Utilities (1%)
- Park \& Open Space (34\%)
- Vacant (10\%)
- Agriculture (2%)

Figure 2.16
Study Area Land Use Percentages

EXISTING CONDITIONS

Figure 2.17
Northwest Quadrant Land Use

Legend
\square Study Area
Land Use

	Agriculture Production
	Commercial
	Industrial
	Multi-Family Residential
	Office
	Park \& Open Spaces
	Public \& Institutional
	Single-Family Residential
	Transportation \& Utility

EXISTING CONDITIONS

Figure 2.18

Legend

Study Area
Counties
Land Use

	Agriculture Production
	Commercial
	Industrial
	Multi-Family Residential
	Office
	Park \& Open Spaces
	Public \& Institutional
	Single-Family Residential
	Transportation \& Utility
	Undeveloped

N

EXISTING CONDITIONS

Figure 219
Southwest Quadrant Land Use

Legend

Study Area \square Counties

Land Use

Agriculture Production
Commercial
Industrial
Multi-Family Residential
Office
Park \& Open Spaces
Public \& Institutional
Single-Family Residentia Transportation \& Utility

Undeveloped
0

EXISTING CONDITIONS

Figure 2.20
Southeast Quadrant Land Use

Legend

Study Area
Land Use

	Agriculture Production
	Commercial
	Industrial
	Multi-Family Residential
	Office
	Park \& Open Spaces
	Public \& Institutional
	Single-Family Residential
	Transportation \& Utility

2.4
 SPECIAL DISTRICTS

There are numerous special purpose districts in the West Houston area including six Municipal Management Districts, three Tax Increment Reinvestment Zones (TIRZs), and nine Super Neighborhoods

MANAGEMENT DISTRICTS

Article III, Section 52, Article XVI, Section 59, and Article III, Section 52-a, of the Texas Constitution authorizes the creation of certain special districts for limited purposes. These districts are areas of the state, county municipality, or other political subdivision that have been divided for judicial, political, electoral, or administrative purposes. These districts may acquire, purchase, sell, or lease real or personal property; litigate legal matters; impose and collect taxes; issue bonds; borrow money; and contract with other entities. Some types of districts are granted the power of eminent domain.

Municipal Management Districts Municipal Management Districts (MMD) are one of several types of special districts authorized by State law. The Texas Local Government Code governs the creation and operation of MMDs. MMDs are empowered o "promote, develop, encourage, and maintain employment, commerce, economic development, and the public welfare in the commercial areas of municipalities and metropolitan areas of this state" (Sec 375.001 (b)). MMDs have the power to finance their operations by issuing bonds or other obligations, payable in whole or in part from ad valorem taxes, assessments impact fees, or other funds of the MMD to provide improvements and services. MMDs may levy a tax only after holding an election within the district. MMDs are intended to supplement, not supplant, existing public services.

Of the six MMD in the study area (Figure 2.21), three are funding partners of this study. They include Westchase Management District, Memoria Management District, and The Energy Corridor Management District.

Westchase Management District The Westchase Management District was formed in 1995. The District comprises 4.2 square miles and has 26,883 residents and 15,621 housing units in 2010. The District's employers however employ approximately 88,317 employees. The District has over 15 million square feet of office space, 2.4 million square feet of retail space, and 1.6 million square feet of service center and warehouse space. There are also 22 hotels and over 50 multi-family communities within the District.

Corporate Campus in the
Werporate Gampus

Memorial Management District The Memorial Management District was created in 1999, and works in conjunction with the Memorial City Redevelopment Authority (TIRZ 17). The District is approximately 850 gross acres of land between Bunker Hill Road and the West Sam Houston Toll Road - north and south of the newly expanded Interstate 10 , the Katy Freeway. The major employers in the District include the Memorial City Mall, the Memorial City Memorial Hermann Medical Center, the Chase Bank Service Center, Air Liquide, CEMEX US Operations, and the Metro National Corporation. There is more than 3.5 million square feet of retail space, almost 3.2 million square feet of office space, several eminent hotels and multifamily housing all located within the District. Businesses within the District employ more than 47,000 people who commute in daily from all over the Houston area.

The Energy Corridor
Management District
The Energy Corridor Management District was created in 2001. Currently, the Energy Corridor is the third largest employment center in the region with more than 91,000 employees. The Energy Corridor currently has over 21 million square feet of office space, with another 12 million proposed or under construction.

Tax Increment Reinvestment Zones

 Chapter 311 of the Texas Tax Code enables counties and city to create Tax Increment Reinvestment Zones (TIRZs). TIRZs help finance the cost of redevelopment and encourage development within the designated area that would otherwise not attract sufficient market development in a timely manner. Taxes attributable to new improvements (tax increments) are set aside in a fund to finance public improvements within the boundaries of the zone. The two TIRZs in the StudyArea are shown in Figure 2.22.

EXISTING CONDITIONS

Super Neighborhoods

The Super Neighborhood Initiative was developed as a means to receive and consolidate input offered by residents and communitybased organizations throughout the City of Houston. The initiative provides a more organized and efficient system of community participation in decisions of local significance made of the City.

The City of Houston launched the Super Neighborhood Initiative in 1999 to encourage residents to work together to identity and prioritize needs and concerns in their communities. In 2003, the City passed an ordinance formalizing the Super Neighborhood Initiative as a program with the Department of Planning \& Development. The boundaries of each super neighborhood are typically designated by major physical features (bayous, freeways, etc.) to group together contiguous communities that share common physical characteristics, identity or infrastructure. Super Neighborhoods in the Study Area are shown in Figure 2.23.

Figures $2.24-2.26$ show the home zip codes of employees that work in the three funding partner management districts. These maps indicated that a significant number of people are commuting from areas along SH 6 north of Interstate 10, as well as Fort Bend County, and inside Loop 610

EXISTING CONDITIONS

2.5
 PROPOSED DEVELOPMENT

Figure 2.27 shows the proposed major developments in the Study Area for the next several years, as of January 2015. These developments include 2,024 residential units and 6.7 million square feet of commercial space. Table 2.10 provides a description of each project.

These projects are indicative of the growth in West Houston. The leasing of 6.7 million square feet of additional office space and over 2,000 residential units will undoubtedly increase congestion within the Study Area.

EXISTING CONDITIONS

2.6
 ROADWAYS
 AND ROADWAY SAFETY

The roadways in the West Houston Study Area are some of the most heavily traveled in the Region. The Study Area contains over 50 miles of limited access freeways and toll roads, and nearly 400 miles of major thoroughfares. Figure 2.28 shows the current classifications of major transportation facilities in the Study Area.

The 2014 Average Daily Traffic (ADT) volumes of the Study Area roadways are depicted in Figure 2.30. ADT is the total traffic volume for a given roadway segment during a given time period. ADT is a simply measure of how busy a road is during the year. Note that State Highway 6 and Westheimer Road (FM 1093) both carry Freeway capacity volumes ($50,000+$ ADT $)$ along nearly their entire length in the Study Area.

Figure 2.32 is the City of Houston 2014 Major Thoroughfare and Freeway Plan (MTFP). The MTFP identifies roadway segments that need to be lengthened or widened based on future growth and development. The plan is updated annually, and serves as notice to the public for developing land adjacent to the identified roads

Figure 2.31 shows the Level of Service (LOS) for roadways in the Study Area. LOS is a volume-to-capacity (v / c) ratio that measures the quality of service on a given facility. The capacity of a given roadway is constant, and is based on the facility's size and geometry. However, the volume of traffic on that facility varies by time and conditions on a given day.

LOS is a range of v / c ratios denoting the level of traffic congestion on a given facility. Typically, a v/c ratio of less than 0.85 indicates good traffic flow. A rate from 0.85 to 1.0 is acceptable. A rate between 1.0 and 1.25 indicates moderate congestion, and a rate above 1.25 is indicative of severe congestion.

Within the West Houston Study Area, many of the major thoroughfares are currently experiencing moderate to severe congestion. State Hwy 6, Eldridge Parkway, Brittmore Drive, the Beltway 8 frontage roads, Clay Road, Briar Forest Drive, Barker Cypress Road and Gessner Road are some of the roadways currently experiencing the most congestion. Few roadways in the Study Area have v / c less than 0.85 . This means that most roadways in the Study Area are already near or exceeding their designed capacity TxDOT produces an annual list of the 100 most congested roadways in Texas. Table 2.11 lists the roadways in the Study Area that are on the 2014 Top 100 Congested Roadway in Texas.

west
houston

EXISTING CONDITIONS

TABLE 2.11 - MOST CONGESTED ROADS WITHIN STUDY AREA						

Source: TxDOT, 2014 Top 100 Most Congested Roadways in Texas

Vehicular crash information from 2008 to 2012 was obtained from TxDOT and analyzed to determine the severity and nature of vehicle collisions in West Houston. The results of this analysis are presented below.

On average, vehicle crashes in West Houston account for nine percent of all crashes in the Region (Table 2.12) A total of 41,043 crashes occurred in the Study Area from 2008 to 2012. Annual crash totals are shown in Figure 2.29. After peaking at 9,179 crashes in 2010, vehicle crashes declined 27 percent to 6,714 crashes in 2012.

Figure 2.34 shows vehicle crashes from 2008 to 2012 by time of day. Nearly half of all vehicle crashes (46\%) in West Houston occur during peak traffic periods (6AM-9AM [17\%] and 4PM-7PM [29\%]), the 5PM hour having the highest crash rate of the day Weekday analysis shows a rise in crashes as the week progressed, with Friday having the highest crash occurrence of any weekday (Figure 2.35).

In terms of severity, nearly two-thirds of al crashes were non-injury, property damage only crashes, slightly more than one-third were injury crashes, and one percent involved a fatality (Figure 2.36). Over the five year period, there were 232 fatalities and 21,706 injuries reported (Table 2.13).

TABLE 2.13-CRASH SEVERITY			
Year	Crashes	Total Injuries	Fatalities
2008	8,876	4,937	48
2009	8,413	4,496	37
2010	9,179	4,604	47
2011	7,861	3,956	44
2012	6,714	3,713	56
TOTAL	41,043	21,706	232

According to Figure 2.37, a roughly equal number of crashes occurred at intersection and non-intersection locations. Only 12 percent related to driveway access. Over 70 percent of all crashes occurred on surface streets (city, county, and farm-to-market roads), while only 29 percent took place on highways and toll roads (Figure 2.38).

The types of collision are listed in Table 2.14. Rear-end collision were the most predominate type, accounting for nearly one-fifth of all collisions. Broadside, or "T-bone" collision, collisions with parked cars, single vehicle crashes, and sideswipe collisions rounded out the top five collision types.

TABLE 2.14-VEHICLE COLLISON DYNAMICS		
Collision Type		Percent
Rear End 18.80% Broadside 16.30% Rear End-Parked Car 15.80% One Vehicle Crash 13.20% Sideswwe-SD 9.70% Left Turn Broadside-OD 8.80% Left Turn Broadside 4.30% Through with Left Turn 2.30% Through with Right Turn 2.20% Right Turn Broadside 1.80% Headon 1.10% All Others* 5.80%		

The spatial distribution of vehicle crashes is illustrated in Figure 2.39. It shows that crashes are heavily concentrated in the Southwest quadrant of the Study Area, and additional clusters along State Hwy 290 and State highway 6 at Farm-to-Market Road 529. These findings correlate exactly with the Level of Services depicted in Figure 2.32 for the same locations in the Study Area.

Figure 2.37 shows the number of intersection related crashes. Table 2.16 compares the Study Area roadway crash rates to State averages for those road types. Table 2.15 shows the 2012 TxDOT crash rates for varied urban and rural road types.

$|$| TABLE 2.15-URBAN TRAFFIC CRASHES PER | |
| :--- | ---: |
| 100 MILLION VEHICLE MILES | |
| Highway System | Crash Rate |
| Interstate | 94.14 |
| US Highway | 148.64 |
| State Highway | 198.3 |
| Farm-to-Market | 212.17 |
| Road Type | Crash Rate |
| 2 lane, 2 way | 181.25 |
| 4 or more lanes, divided | 117.37 |
| 4 or more lanes, undivided | 276.34 |

EXISTING CONDITIONS

ĥosston

Legend

- Study Area
\square Counties
Level of Service

- At or Below Capacity

EXISTING CONDITIONS

EXISTING CONDITIONS

Figure 2.34 Study Area Accident Counts By Hour of Day* *AM Peak 6 AM to 9 AM; PM Peak 4 PM to 7 PM

Figure 2.35 Study Area Accident Counts By Weekday

- Injury (34%
- Fatal (1\%)
- Not Injured (62%)
- Unknown (3\%)
- Not Reported (<1\%)

Figure 2.36

Study Area Accident Severity

- Intersection Related (43\%)
- Driveway Access (12% - Non Intersection (45\%) - Not Reported (<1\%)

Figure 2.37

Study Area Accident Intersection Relationship

- Highways (27\%)
- Farm To Market 9%)
- County Road (17\%)
- City Street (45\%)
- Tollways (2%)
- Other Roads (. $.01 \%$)

Figure 2.38

Figure 2.38
Study Area Accident Roadway Type

EXISTING CONDITIONS

EXISTING CONDITIONS

TABLE 2.16 - HIGHWAY AND MAJOR ROADWAY CRASH RATES			
Street Name	Road Type	Rate(Crashes per 100M VMT)	Percent State Average
US 290	US Highway	175.67	18\%
Beltway 8	State Highway	69.90	-65\%
Grand Parkway	State Highway	33.35	-83\%
Katy Frwy	Interstate	61.43	-35\%
W Little York Rd	4+ Undivided	703.16	154\%
Boheme Dr	4+ Undivided	330.71	20\%
Synott Rd	4+ Undivided	227.45	-18\%
Hammerly Blvd	4+ Undivided	173.72	-37\%
Barker Cypress Rd	4+ Undivided	171.66	-38\%
Alief Clodine Rd	4+ Undivided	169.60	-39\%
Long Point Rd	4+ Undivided	168.21	-39\%
Memorial Dr	4+ Undivided	157.29	-43\%
Eldridge Parkway	4+ Undivided	138.15	-50\%
Addicks-Fairbanks	4+ Undivided	108.70	-61\%
Rogerdale Rd	4+ Undivided	103.78	-62\%
Cook Rd	4+ Undivided	91.33	-67\%
Britmore	4+ Undivided	70.95	-74\%
SH 6	4+ Undivided	38.77	-86\%
Hempstead Hwy	4+ Undivided	32.63	-88\%
Old Westheimer Rd	4+ Undivided	3.86	-99\%
Cinco Ranch Blvd	4+ Divided	781.11	566\%
Bellaire Blvd	$4+$ Divided	405.53	246\%
Harwin Dr	$4+$ Divided	375.99	220\%
Fondren Rd	4+ Divided	276.83	136\%
Ranchester Dr	$4+$ Divided	240.50	105\%
Richmond Ave	4+ Divided	235.64	101\%
Franz Rd	4+ Divided	196.18	67\%
Gessner Road	4+ Divided	190.06	62\%
Dairy Ashford	$4+$ Divided	186.26	59\%
Fry Road	4+ Divided	184.16	57\%
Senate St	4+ Divided	175.36	49\%
Park Ten Blvd	$4+$ Divided	172.33	47\%
Westheimer	4+ Divided	168.89	44\%
Mason Road	$4+$ Divided	166.25	42\%
Saums Rd	4+ Divided	146.29	25\%
Westriew Dr	$4+$ Divided	142.48	21\%

TABLE 2.16 - HIGHWAY AND MAJOR ROADWAY CRASH RATES (CONTINUED)			
Street Name	Road Type	Crash Rate (per 100M VMT)	Percent State Average
Blalock Rd	4+ Divided	140.44	20\%
Clay Road	4+ Divided	139.03	18\%
FM 1464	4+ Divided	137.72	17\%
Queenston Blvd	4+ Divided	124.74	6\%
Huffmeister Rd	4+ Divided	123.26	5\%
Kingsland Blvd	4+ Divided	112.04	-5\%
Wilcrest Dr	4+ Divided	110.07	-6\%
Greenhouse Road	4+ Divided	89.45	-24\%
Kempwood Dr	4+ Divided	84.56	-28\%
Briar Forest Dr	4+ Divided	83.15	-29\%
Kirkwood	4+ Divided	81.80	-30\%
Highland Knolls Dr	4+ Divided	79.10	-33\%
Addicks Clodine Rd	4+ Divided	76.03	-35\%
Keith Harrow Blvd	4+ Divided	73.32	-38\%
Park Row	4+ Divided	69.52	-41\%
Westheimer Pkwy	4+ Divided	56.33	-52\%
Groeschke Rd	4+ Divided	44.05	-62\%
Peek Rd	4+ Divided	33.78	-71\%
Westgreen	4+ Divided	28.97	-75\%
Colonial Pkwy	4+ Divided	16.48	-86\%
Westpark Tollway	4+ Divided	11.83	-90\%
FM 529	4+ Divided	6.87	-94\%
Howell Sugarland Rd	4+ Divided	3.10	-97\%
High Star Dr	2 lane, 2 way	440.46	143\%
Bunker Hill Rd	2 lane, 2 way	177.90	-2\%
Campbell Rd	2 lane, 2 way	136.62	-25\%
Greenbay	2 lane, 2 way	127.56	-30\%
Strey Ln	2 lane, 2 way	99.98	-45\%
Taylorcrest Rd	2 lane, 2 way	88.40	-51\%
Briar Hill Dr	2 lane, 2 way	85.22	-53\%
Tanner Rd	2 lane, 2 way	74.64	-59\%
Morton Road	2 lane, 2 way	72.76	-60\%
Clodine Rd	2 lane, 2 way	28.86	-84\%
Patterson Rd	2 lane, 2 way	11.39	-94\%
Study Area	All Major Roads	92.76	N/A
Source: TXDOT/H-GAC			

west
nouston

2.7
 TRANSIT AND ALTERNATIVE MODES

West Houston is served by public transit and other alternative travel modes. The availability and capacity of these services varies significantly throughout the Study Area. All of these services have the potential for improvement and expansion, as they can play a more vital role in enhancing mobility in West Houston. Indeed, mode choice and integration will be the keys to resolving the transportation challenges facing West Houston residents and commuters in the future.

The Metropolitan Transit Authority of Harris County (METRO) is the primary transit service provider for the study area (Figure 2.40). There were previously 31 routes serving the study area (as shown in Figure 2.41), including 18 local routes, 11 Park and Ride routes, a Signature Bus service, and an employee shuttle. Five of the 18 local routes have the highest average daily ridership in the METRO system in 2013. Moreover, these routes accounted for nearly 25% of METRO's daily ridership. Ridership information and Productivity/Performance metrics these routes are shown in Table 2.15. Additional information about each route is provided in Appendix C.

ADA/paratransit service is provided by METROLift within Harris County. Park and Ride services are focused on the IH 10 Katy Freeway, Westpark Tollway and US 290 corridors, using the HOV/HOT lanes. Local services were provided on the following corridors:

- North Eldridge Parkway
- Dairy Ashford Road
- Wilcrest Drive
- Gessner Road
- Kempwood Road
- Hammerly Road
- Long Point Drive
- Memorial Drive
- Briar Forest Drive
- Westheimer Road
- Richmond Avenue
- Alief-Clodine Road/Harwin Drive
- Bellaire Boulevard

The seven Park \& Ride facilities in the study area are listed below with their respective parking capacities:

PARK AND RIDE FACILITIES	
	Park \& Ride

METRO supports vanpool services known as METRO STAR. METRO also supports groups with common destinations by providing matching and administrative services. Currently, there are 127 METRO vanpools serving destinations in West Houston and these vanpools have 9,655 commuters registered to use the service

EXISTING CONDITIONS

Legend
 Study Area
 P Park \& Rides
 圊 Transit Centers
 New Bus Network Routes
 Peak Only
 - 15
 15 Min Headway
 30 Min Headway
 - 60 Min Headway
 Fort Bend Public Transit
 A

TABLE 2.17-2013 METRO RIDERSHIP INFORMATION AND PERFORMANCE METRICS (PREVIOUS BUS NETWORK)
Productivity Metrics (Weekday)

Route	Type	AVG Daily Ridership	Productivity Metrics (Weekday)			AVG Fare	Operating Ratio	AVG Subsidy per Boarding	Productivity Metrics (Weekend)		Performance Metrics		
			AVG Daily Ridership	Boardings per Revenue Mile	Boardings per Revenue Hour				Saturday Boardings per Revenue Hour	Sunday Boardings per Revenue Hour	AVG Speed	On-Time Performance	Notes
303-WEST SHUTTLE	Employee Shuttle	238											FY 2012 METRO Ridership Report
2-BELLAIRE \dagger	Local	7,354	-										
4-BEECHNUT	Local	4,469			-				-				
9-GULFTON LIMITED	Local	1,402											
19-WILCREST	Local	1,126											
20-LONG POINT LIMITED	Local	2,391									-		
25-RICHMOND	Local	5,360	-										
36-KEMPWOOD	Local	1,563											
46-GESSNER CROSSTOWN	Local	4,983	-	-	-		-		\bullet	-			
53-BRIARFOREST LIMITED	Local	3,802											
58-HAMMERLY	Local	818				-		-					
67-DAIRY ASHFORD CROSSTOWN	Local	758											
70-MEMORIAL	Local	429						-					
72-WESTVIEW CIRCULATOR	Local	806											
75-ELDRIDGE CROSSTOWN	Local	381					-	-					
81-WESTHEIMER SHARPSTOWN	Local	4,946	\bullet	-									
82-WESTHEIMER WEST OAKS	Local	6,523	\bullet	-	\bullet		\bullet		-	-			
131-MEMORIAL	Local	1,694									\bullet		
132-HARWIN	Local	2,251									-		
214-NORTHWEST STATION	Park \& Ride	2,334		\bullet	\bullet	-	\bullet				\bullet		
216-PINEMONT / W LITTLE YORK	Park \& Ride	687											
217-CYPRESS	Park \& Ride	1,502				\bullet	\bullet				\bullet		
219-PINEMONT W LITTLE YORK NORTHWEST STATION	Park \& Ride	257											
221-KINGSLAND	Park \& Ride	2,307											
222-GRAND PARKWAY	Park \& Ride	713				\bullet	\bullet				\bullet	\bullet	
228-ADDICKS	Park \& Ride	1,960				\bullet						-	
229-ADDICKS KINGSLAND MIDDAY	Park \& Ride	468					\bullet						
274-WESTCHASE / GESSNER	Park \& Ride	431										-	
285-KINGSLAND UPTOWN	Park \& Ride	179									\bullet	\bullet	
298-KINGSLAND / ADDICKS / TMC	Park \& Ride	1,117											
402-QUICKLINE BELLAIRE	Signature	719											
Marker (\bullet) indicates that route is in the top 10 among local bus routes or the top 5 among Park \& Ride routes for the indicated productivity or performance metric // \dagger - Highest Average Daily Ridership among local routes in the METRO Service Area													

Marker (\bullet) indicates that route is in the top 10 among local bus routes or the top 5 among Park \& Ride routes for the indicated productivity or performance metric // \dagger - Highest Average Daily Ridership among local routes in the METRO Service Area

EXISTING CONDITIONS

Legend
 Study Area
 P Park \& Rides
 Transit Centers
 Parcel
 - Bus Routes
 Fort Bend Public Transit
 Transit Accessibility
 0.25 mi
 0.5 mi
 1

huosston

EXISTING CONDITIONS

Figure 2.44
New METRO Bus Network Accessibility

Legend

\square	Study Area
	Counties
\mathbf{P}	Park \& Rides
R	Transit Centers
	Parcels

New Bus Network Routes

Peak Only

- $10-15$ mins
- $16-30 \mathrm{mins}$
- $31-60 \mathrm{mins}$

Fort Bend Public Transit

Transit Accessibility

0.25 mi
0.5 mi
©

On August 16, 2015, METRO launched its new local bus service throughout the region Under METRO's New Bus Network, West Houston is serviced by 24 routes, including 11 High Frequency routes (Headways of 15 minutes or less), 2 Ridership routes (30 minute headways), 9 Coverage routes (60 minute headways), 2 Peak-Hour Service routes, plus all 11 Park \& Ride routes ${ }^{\dagger}$. Figure 2.42 and Table 2.16 provide information on these local routes. The proposed routes would address some of the suggestions mentioned above.

A portion of the southwest corner of the study area is in Fort Bend County. Roughly half of this area is within METRO's Service Area. However, all of this area has access to transit services offered by Fort Bend County. All the services offered by the Fort Bend County Public Transportation Department, with the exception of demand response, operate outside the study area.

Fort Bend County provides demand response and commuter services through its Public Transportation (hereafter referred to as FBCT) that was formed in 2005. A total of 37 vehicles are used to provide these services Monday through Friday (excluding County Holidays). All services are open to the general public and all vehicles are handicap accessible. Demand Response service is provided within the County, and to medical facilities in Harris County.

The commuter services offer trips in to the Greenway Plaza, Galleria and Texas Medical Center areas of Houston. Figure 2.45 shows the annual Demand Response and Commuter Service Trips since 2005.

The Demand Response service allows riders to schedule service by phone (tollfree) Monday through Friday from 8 AM to 5 PM. Reservations can be made from one to 30 days in advance. Repeat trips may also be scheduled in advance. However, reservations are accepted on a "time and space" available basis. Service is curb-tocurb, although persons with disabilities may request door-to-door service. Passengers 12 years or younger must be accompanied by another person 18 years or older. (Fort Bend County Westpark Corridor Park and Ride Advance Planning Report, IDC, Inc., June 2011)

TABLE 2.18 - METRO NEW BUS NETWORK

 ROUTES (OCTOBER 2014| Route\# | Route Name | Network |
| :---: | :---: | :---: |
| 2 | Bellaire | Frequent |
| 4 | Beechnut | Frequent |
| 25 | Richmond | Frequent |
| 26 | Long Point Cavalcade | Frequent |
| 46 | Gessner | Frequent |
| 63 | Fondren | Frequent |
| 82 | Westheimer | Frequent |
| 152 | HarwinExpress-Westwood | Frequent |
| 153 | HarwinExpress-Briar Forest | Frequent |
| 160 | Memorial City Express | Frequent |
| 161 | Wilcrest Express | Frequent |
| 23 | Clay W 43rd | Coverage |
| 39 | Katy Freeway | Coverage |
| 58 | Hammerly | Coverage |
| 67 | Dairy Ashord | Coverage |
| 70 | Memorial | Coverage |
| 72 | Westriew | Coverage |
| 75 | Eldridge | Coverage |
| 162 | Memorial Express | Coverage |
| 9 | Gultoon Holman | Ridership |
| 36 | Kempwood W 34th | Ridership |
| 151 | Westpark Express | Peak Only |
| 402 | Bellaire Quickline | Peak Only |

Coverage routes are designed to provide access tit the transits sytem for transit
riders and locations that cannot supoort freuunent senice

Ridership routes have strong ridership potential but without the curenent demand to
 in the off-peak, mimday, evening, ate night, and weekend periods, and som
Peak Period expresss routes operate a portion of the same route as Iocal senice (regularly spaced stopss) and somemtimes a portion of the rout is non-stio on a treeway. Averages speed is, thereforere, higher than other Iocal routes but still ower
than commuter routes. These routes are peak-period, weekday only service. Pead thena commuter routes. These outes aref epak-perinod
periods

Figure 2.45 Fort Bend County Transit Service Trips

Figure 2.46 Annual Memorial City Shuttle Service Ridership

FBCT offers two commuter services known as TREKEXPRESS and FORT BEND EXPRESS. TREKEXPRESS provides direct bus services into the Greenway Plaza and Uptown Galleria area of Houston from two Park \& Ride locations in Sugarland. TREKEXPRESS routes also stop at METRO's West Bellfort Park \& Ride lot to allow passengers to transfer to other METRO routes, if desired. FORT BEND EXPRESS provides commuter service to the Texas Medical Center. The service originated at the Fort Bend County Fairgrounds and stops at both Sugarland Park \& Ride locations before continuing the Texas Medical Center. (Fort Bend County Westpark Corridor Park and Ride Advance Planning Report, IDC, Inc., June 2011)

FBCT is projected to begin construct its first permanent Park \& Ride facility in the Westpark Corridor in 2016. The facility will offer commuter services to locations in Houston, and could become an important transit hub for commuter shuttles and local bus service in the future. Additional information about the new FBCT Park \& Ride is in Section 5.2.

The Energy Corridor partnered with METRO to create the 75 -Eldridge Crosstown. The route operates along Eldridge Parkway, and provides connections with other METRO routes and Park \& Rides. Memorial City has a complimentary shuttle service (Figure 2.45) operated by Metro National, Inc, the Memorial Management District's largest property owner.

The shuttle currently operates from 11AM to 2 PM Monday thru Friday, and takes riders from several locations within the Management District to and from the food court at Memorial City Mall. From 2005 to 2014 the average annual ridership has been over 12,000 persons. Figure 2.46 provides annual ridership information on the Memorial City Shuttle.

In addition to public transit, vanpools, and circulator shuttles residents and commuters in West Houston can utilize other means of getting around. There are numerous private and employer-sponsored carpools, as well as ridematching services like NuRide and Carma, taxi services like Yellow Cab and Uber, and vehicle sharing services like Enterprise CarShare

Enterprise CarShare gives commuters access to a shared vehicle throughout the day so they can run personal or work errands. Vehicles can be rented 24 hours a day, seven days a week with fuel, physical damage/liability protection, vehicle maintenance and $24 / 7$ roadside and member assistance for nominal hourly fees. Currently, Enterprise CarShare and the Energy Corridor have partnered to provide this service at two locations within the Study Area.

West Houston employers can also participate in other alternative commuting solutions such as telecommuting, alternate work schedule and parking management to allow their employees greater work flexibility. These solutions are offered by H-GAC's Transportation Department as incentives to help improve air quality in the Region. Bicycle and pedestrian-related commute solutions will be discussed in the next section.

TABLE 2.19 - TRANSIT ACCESSIBILITY			
	METRO		FBCT
Land Use	Previous Network	New Bus Network	Parcels Serviced
Agricultural	71	84	3
Commercial	2,776	3,035	131
Government/ Institutional	878	955	1,339
Industrial	25	36	3
Multi-Family	442	478	10
Other	1,254	1,401	236
Parks \& Open Space	139	147	526
Residential	50,181	52,409	12,580
Vacant	1,986	2,165	198
TOTAL	57,752	60,710	15,026
Percentage of Study Area Parcels	35\%	37\%	9\%

2.8
 BICYCLE AND
 PEDESTRIAN SAFETY

As stated in the Energy Corridor District's Bicycle Master Plan, "Bicycling and walking are integral components of an efficient transportation network, along with public transit and the use of private motor vehicles. Therefore it is important that appropriate bicycle and pedestrian accommodations be made available to the public." The existence, condition, and connectivity of bicycle and pedestrian facilities vary considerably throughout the West Houston Study Area Bicycle and pedestrian facilities will be discussed in relation to the Study Area subregions described in Section 2.1

The West Houston Study Area has an extensive collection of bicycle and shared use facilities (See Figure 2.47). The Study Area contains 13 percent of the $1,254.5$ miles of bicycle and shared use facilities in the Region. As shown in Table 2.20, the Study Area has over 160 miles of existing public facilities, with another 113 miles of proposed public facilities planned for construction in the next 10 years. These planned public facilities are in addition to any facilities planned by private interests. All of the bicycle lanes and signed bicycle routes are located in the Inner Study Area within the Houston city limits. The inner

Study Area also contains an extensive network of shared use trails (approximately 10 miles) in Terry Hershey Park along Buffalo Bayou.

Both reservoirs contain shared use trails George Bush Park located in Barker Reservoir has more than 11 miles of trails. The trails in George Bush Park also connect to the trails in Terry Hershey Park to create nearly 22 miles of connected trails. Bear Creek and Cullen Parks are located in Addicks Reservoir and together these parks have 5.5 miles of trails.

The Outer Study Area has numerous shared use trails. However, many of these trails are off-street along waterways and are generally not connected. Exceptions include the 6.8 mile signed bicycle lane along FM 529 from US 290 to Barker Cypress Road, and the extensive network of shared use trails in the Cinco Ranch community.

Though many exceptions exist especially along arterial streets, large portions of the inner Study Area are either connected with sidewalks for pedestrian travel, or composed of very low traffic streets within subdivisions on which walking in the street is sufficiently safe and comfortable. Pedestrians can cross major streets relatively easily at signalized intersections, but large distances between controlled crosswalks locations lead many to cross at mid-block (as Study Area crash data shows) where motorists may not expect them.

Few state-of-the-practice pedestrianactivated enhanced crosswalks are in place. These include active warning devices and Pedestrian Hybrid Beacons, which stop traffic with a solid red indication during the "WALK" phase then permit stop-and-proceed with flashing red while pedestrians finish crossing.

In the outer Study Area, conditions for pedestrians vary widely. Typically the walking environment is pedestrian-friendly within subdivisions (sidewalks, or very-low-traffic internal streets without them) but pedestrian-hostile outside them (no sidewalks along arterials and collectors, and major gaps where sidewalks do exist). Within some subdivisions there are sidewalk gaps across utility corridors such as power line rights of way. Although the trails system is well developed in the area it may be difficult for pedestrians and cyclists to access their final destinations as there are few dedicated on-street or other connecting facilities for the "last mile" of the trip. Many retail strips, commercial centers, and big box and superstore developments throughout the Study Area have no protected walkways between streets and storefronts, and are walled off from adjacent neighborhoods that would otherwise be an easy walk or bike ride away.

TABLE 2.20 - WEST HOUSTON BICYCLE \& PEDESTRIAN FACILITIES						
Facility Type	Existing		Proposed		and Totals	
	Facilities	Length (mi)	Projects	Length (mi)	Faciilities	Length (mi)
Bike Lane	18	31			18	31
Pedestrian Walkway*	1	0.05			1	0.05
Shared Use Path/Trail	155	105.1	72	113.8	227	218.9
Signed Shared Roadway	39	28.6			39	28.6
Total	213	164.7	72	113.8	285	278.5

*Length of City of Houston Pedestrian Walkway is approximately 258 feet

Current Bike and Trails Projects in the Energy Corridor

EXISTING CONDITIONS

Hos

Figure 2.48 Annual Bicycle and Pedestrian Crashes

Figure 2.49 Bicycle and Pedestrian Crash Frequency by Weekday

Figure 2.50 Bicycle and Pedestrian Crash Frequency by Month

The safety experience for bicyclists and pedestrians in West Houston has been mixed. Bicycle and pedestrian crashes respectively averaged eight and nine percent of all crashes in the Region (Tables 2.21 and 2.22 , respectively).

TABLE 2.21 - ANNUAL BICYCLE CRASHES				
Year	Region	$\begin{gathered} \text { City of } \\ \text { Houston } \end{gathered}$	$\begin{array}{r} \text { West } \\ \text { Houston } \end{array}$	$\begin{array}{r} \text { Regional } \\ \text { Pct } \end{array}$
2008	579	323	55	9\%
2009	612	350	50	8\%
2010	479	234	47	10\%
2011	455	193	37	8\%
2012	677	370	39	6\%
5 YR AVG	560.4	294	45.6	8\%
TABLE 2.22-ANNUAL PEDESTRIAN CRASHES				
Year	Region	$\begin{gathered} \text { City of } \\ \text { Houston } \end{gathered}$	West Houston	$\begin{array}{r} \text { Regional } \\ \text { Pct } \end{array}$
2008	1239	871	100	8\%
2009	1125	824	105	9\%
2010	911	528	87	10\%
2011	890	498	83	9\%
2012	1269	894	104	8\%
5 YRAVG	1,086.80	723	95.8	9\%

From 2008 to 2012, 228 bicyclists and 479 pedestrians were involved in collisions with motor vehicles. Tables 2.23 and 2.24 provide more detail on crashes, injuries, and fatalities for bicyclists and pedestrians in the Study Area. Crash characteristics are shown in Figures 2.48-2.56. Annual crashes (Figure 2.48) have fluctuated over the five year period for both bicyclists and pedestrians. From 2011 to 2012, crashes increased by 25 percent for pedestrians, and 5 percent for bicyclists.

Similarly, crashes vary by weekday for both bicyclist and pedestrians. For pedestrians, Tuesdays and Fridays were days with the highest crashes, while it was Mondays for bicyclists (Figure 2.49). An analysis of crashes by month of the year (Figure 2.50) revealed that March and October were the worst months for pedestrians, while April and October were the worst months for bicyclists. The time of day (Figure 2.51) bicycle and pedestrian crashes occurred was similar to the general crash pattern for the Study Area (See Figure 2.34). For pedestrians, nearly half of all crashes occurred during peak traffic hours (6AM9AM and 4PM-7PM). Likewise, over half (53 percent) of all bicycle crashes in the Study Area occurred during these times. The age of bicyclist and pedestrians involved in crashes (Figure 2.52) was interesting. For pedestrians, the largest age group of crash victims were 25-44 year olds, followed by those 18 years and under. For bicyclists, those 18 years and younger were the largest groups of victims, followed by those 25-44 years old

As mentioned above, varied pedestrian environment in the Study Area may cause pedestrians to cross streets at mid-block creating a safety hazard. Crash data confirms this phenomenon, as 53 percent of pedestrian crashes in the Study Area do not occur at intersections (Figure 2.53).

TABLE 2.23 - BICYCLE CRASH SEVERITY			
Year	Crashes	Injuries*	Fatalities
2008	55	55	0
2009	50	50	0
2010	47	42	2
2011	37	33	2
2012	39	40	0
TOTAL	228	220	4

TABLE 2.24 - PEDESTRIAN CRASH SEVERITY				
Year		Crashes	Injuries	Fatalities
2008				
200				
209				
105				
2011				

Interestingly, the opposite is true for bicyclists, as 56 percent of bicycle crashes occurred at intersections (Figure 2.54). 90 percent of pedestrian crashes and 95 percent of bicycle crashes resulted in injuries. 9 percent of pedestrian crashes and 2 percent of bicycle crashes were fatal (Figures 2.55 and 2.56).

Spatially, 83 percent of pedestrian crashes and 72 percent of bicycle crashes occurred east of State Highway 6, and 84 of the 228 bicycle crashes occurred with one-quarter mile of an existing bicycle facility, resulting in 81 injuries and 2 deaths (Figures 2.57 and 2.58).

Figure 2.53 Pedestrian Crash Frequency by Roadway Location

Figure 2.55 Pedestrian Crash Severity

Figure 2.54 Bicycle Crash Frequency by Roadway Location

Figure 2.56 Bicycle Crash Severity
$=$ Intersection Related (38\%)

- Driveway (9\%)

Non Intersection (53\%)

- Pedestrian
- Bicycle
- Injured (90\%)
- Fatal (9\%)
- Not Injured (1\%)

EXISTING CONDITIONS

EXISTING CONDITIONS

Legend

1 Study Area

\square Counties

0

EXISTING CONDITIONS

2.9
 RAIL FACILITIES

There is only one active rail facility in the Study Area. Union Pacific Railroad has an active rail line adjacent to Hempstead Road and US 290. As Shown in Figure 2.59, approximately 3.5 miles of this rail line pass through the Study Area. However, there are two abandoned rail line right-of-way corridors in the Study Area. One corridor is adjacent to Interstate 10, and the other runs along the Westpark Tollroad.

The railroad line along Interstate 10 , first built in 1893, was abandoned in 1997 when Union Pacific sold the right-of-way to TxDOT for the expansion of Interstate 10. The line was approximately 23 miles long, and extended from Harris-Fort Bend County line in Katy, TX to the Eureka yard just inside Loop 610. The Westpark rail line, formerly the Bellaire Subdivision, extended for approximately 38 miles from US 59 and Montrose Blvd. to the Fort Bend-Wharton County line. The rail line was abandoned in 1992 when Southern Pacific Railroad sold the 100 feet of right-of-way to METRO. In 1999, METRO sold half of the right-of-way to the Harris County Toll Road Authority to construct the Westpark Tollway. METRO currently has plans to use the remaining portion of right-of-way for construction of a portion of the University Lightrail line.

In 2008, H-GAC commissioned the Regional Commuter Rail Connectivity Study that took an unconstrained long range look at commuter rail options in the Houston area. The study examined the Westpark corridor and four others as potential commuter rail corridors. It concluded that the Westpark Rail Corridor could potential have over 6,800 passengers per week. The study did not consider the Interstate 10 corridor as a commuter rail route because the right-of-way had already been sold to expand the Katy Freeway

Recently, METRO sold additional portions of the Westpark Corridor right-of-way to the Fort Bend County Toll Road Authority for expansion of the Westpark Tollway from the Grand Parkway to Jones Lane in Fulshear, TX.

2.10
 REGULATIONS, POLICIES AND STRATEGIC PLANS

The land development regulatory framework of political entities in West Houston is diverse. Lack of land use zoning regulations throughout the area presents unique challenges and opportunities for developers However, local governments and special districts have addressed this issue with a wide range of statutes and policies. Peter Coy states that, "Houston is well known as the only major U.S. city with no formal zoning code. Such a seeming lack of order is difficult to grasp by those unfamiliar with the area

The absence of a comprehensive land use code conjures up images of a disjointed landscape where oil derricks sit next to mansions and auto salvage yards abut churches" (2007). But, Teddy M. Kapur says that "...contrary to its free market reputation, the [C]ity of Houston has directed land use

TABLE 2.25-CITY OF HOUSTON DEVELOPMENT ORDINANCES

Ordinance

Chapter 10 - Buildings and Neighborhood Protection
Chapter 19 - Flood Plain
Chapter 26 - Parking
Chapter 33-Planning and Development
Chapter 38 - Rairroads
Chapter 40 - Streets and Sidewalks
Chapter 42 - Subdivisions, Developments and Platting
Chapter 45 - Traffic
allocations by intervening in private deed restrictions and enacting land management controls such as subdivision regulations, street design standards, tax increment reinvestment zones, and prevailing lot size requirements" (2004)

Indeed the City of Houston has a wide array f ordinances (Table 2.25) and policies that give the City the ability to effectively manag land uses. In addition to enforcing deed restrictions in residential areas, the City has a detailed Infrastructure Design Manual and the following ordinances at its deposal to regulate the built environment.

1. Chapter 10 - Buildings and Neighborhood Protection: establishes regulations to protect neighborhoods against blight and outlines various building standards. Buildings on utility easements, deed restrictions, abatement of unauthorized blight, abatement of junked vehicles, Houston multi-family habitability codes, and hoarding and related behaviors provide a few examples of articles defined under this Chapter
2.Chapter 19-Flood Plain: The purpose of this chapter is to promote the public health safety and general welfare and to minimize public and private losses due to flood conditions in specific areas. This chapter provides a regulatory system to monitor the issuance of plats and permits to reduce the likelihood that development within the City of Houston will increase the dangers of flooding.
3.Chapter 26 - Parking: Establish parking regulations for on and off street facilities within the City of Houston. Parking meters commercial vehicle loading zones, booting/ towing, valet parking services, parking benefit districts and residential parking
permits are outlined in this Chapter
4.Chapter 33 - Planning and Development: establishes regulations associated with planning and development within the City of Houston. This chapter relates to regulations regarding the Planning Commission, tree planting, historic preservation, super neighborhoods, and landscape unit costs among others.
2. Chapter 38 - Railroads: establishes regulations for the City's interactions with rail throughout Houston inclusive of permit to lay tracks, crossings of right-of-way by city water and sewer lines, separation of railroad from street grade, closing of crossing gates and guards, speed limit for trains, blowing whistle, as well as the City authorization to participate in certain costs relating to street and railroad intersections are example articles within this Chapter.
3. Chapter 40 - Streets and Sidewalks: establishes regulations for streets and sidewalks within the City of Houston Articles examples associated with this Chapter include the construction of sidewalks, driveways, curbs and gutters, excavation of the public way, bus shelters, paving assessments, sidewalk sales and

TABLE 226 - SELECT STATE OF TEXAS ECONOMIC DEVELOPMENT PROGRAMS

\#	Program	Statue	Tax Type
1	Tax Increment Financing	Chapter 311, Tax Code	Property Tax
2	Tax Abatement Agreements	Chapter 312, Tax Code	Property Tax
3	Value Limitation and Tax Credit	Chapter 313, Tax Code	Property Tax
4	Development Corporation Act of 1979,	$\text { Chapters } 501$ $-505,$	Local Sales \& Use Tax
	Type A/B Sales Tax for Economic Development	Local Government Code	
5	County Assistance Districts	Chapter 387, Local Government Code	Local Sales \& Use Tax
6	Enterprise Zones	Chapter 2303, Government Code	Sales and Use
7	Chapter 380/381 Agreements	Chapters 380-381, Local Government Code	Sales and Use, Property Tax, Other
8	Municipal \& County Hotel Occupancy Tax	Chapters 351 352, Tax Code	Local Hotel Occupancy Tax
9	Public Improvement Districts (PIDs)	Chapter 372, Local Government Code	Special Assessment
10	Neighborhood Empowerment Zones	Chapter 378, Local Government Code	Property Tax, Sales Tax and Local Fee Waivers

performances, alleys, sidewalk and roadway obstructions and impairments.

7 Chapter 42 - Subdivisions,

Developments and Platting: establishes regulations for the platting, subdividing and development of land within Houston's Corporate City Limits to ensure that development and redevelopment efforts in Houston occur in a safe and healthy manne Planning standards and development associated with the City's transit corridors are outlined in this Chapter.
8.Chapter 45 - Traffic: establishes regulations associated with traffic inclusive of the vehicle, pedestrian and bicycle. Articles associated with this Chapter include pedestrian, bicycles, etc. upon limited or controlled-access highways, boarding and alighting moving vehicles, application of chapter to persons propelling push carts, riding animals, etc., use of coasters, toy vehicles and similar toy devices on the roadway.

In 2013, the City of Houston amended Chapter 42 and Chapter 10. Chapter 42 was amended to allow increased housing density outside of Loop 610 by eliminating the distinction between "urban" (inside Loop 610) and "suburban" (outside Loop 610). The Chapter 10 amendment provides neighborhoods with greater protection from incompatible land uses and ensures access to single-family residences

The City says the ordinance changes will eliminate confusion and discrepancies contained within the codes, provide additional resources for neighborhoods to manage their future; make the City competitive with suburban development, improve development standards and increase single-family residential construction within the city limits.

In addition to the aforementioned ordinances, the City also has an Infrastructure Design Manual (IDM). The IDM contains detailed standards for project submittals, including plat drawings, streets, utilities, and traffic controls. The IDM also governs street classification, including designation of transit corridors.

All of the Management Districts, TIRZs, and Super Neighborhoods in the Study Area work with the City of Houston to develop capital improvement projects in their areas, and some have their own capital improvement programs that are incorporated into the City's Capital mprovement Program. In addition, some of these groups develop long-range strategic plans that inform and guide development in their areas. These plans outline broad goals and in some cases include conceptual depictions of future infrastructure and building projects.

Harris County annually adopts Appendix A of the City of Houston's Major Thoroughfare Plan (See Section 4.2). Appendix A contains street cross section geometries that Harris County enforces in the unincorporated areas of the county. Harris County does not utilize the City's Complete Streets Program.

Unlike Harris County, Fort Bend County (FBC) does not adopt the City of Houston's MTFP Appendix A. FBC developed its own street cross section geometries and ROW requirements. The County does not endorse the City's Complete Streets program, although its development regulations contain many elements of the program.

FBC adopted a revised MTFP in February 2015. FBC is currently revising its Subdivision regulations. The revisions should be completed by December 2015.

The State of Texas provides a rich array of economic development tools to help local and county governments encourage and maintain the economic vitality of their jurisdictions. Tools applicable to the Study Area are listed in Table 2.26, and described below. Many of these incentives and assessments are currently being utilized in the Study Area. Details regarding each of these development tools can be found in Appendix G

PUBLIC ENGAGEMENT

PUBLIC ENGAGEMENT

PUBLIC ENGAGEMENT

3.1
 PUBLIC
 INVOLVEMENT

Stakeholder participation and community involvement were a major area of focus for $\mathrm{H}-\mathrm{GAC}$ and the project team during the development of the West Houston Mobility Plan. No plan of this nature can be complete without the input and review of the public, as such, there has been an important effort on part of the West Houston Mobility Plan to gather and incorporate the public's input and feedback.

Throughout the course of the study, there have been numerous opportunities for the public to give their input and be heard. Outreach was accomplished through a variety of methods including a Steering Committee, public meetings, a project website, crowd sourced mapping application, online survey, and stakeholder meetings. Each of the outreach efforts and data gathered from those efforts is outlined in this chapter.

FUNDING PARTNERS

The City of Houston, the Energy Corridor District, Memorial Management District and the Westchase Management District all contributed funds for the local match portion of this study. The funding partners also served on the Steering Committee.

WESTCHASE

3.2
 STEERING COMMITTEE

Key Study Area stakeholders and groups were identified and recruited for involvemen in the study process. A steering committee was formed from this group to assist in identifying key areas of focus for the study effort, as well as to guide the development of the final report and recommendations. The Steering Committee was made up of representatives from the following organizations.

- Houston-Galveston Area Council

City of Houston
The Energy Corridor
The Westchase Management District
West Houston Association

- Memorial Management District METRO
- Harris County
- Gulf Coast Rail District
- TxDOT

The Steering Committee met six times throughout the course of the project, reviewing work and providing guidance to ensure that the goals and desired outcomes for the study were met. All steering committee meetings were held at H-GAC offices (3555 Timmons Lane, Houston, TX 77027) and at Houston TranStar (6922 Old Katy Road, Houston, TX 77024). The dates of the steering committee meetings are
listed below:

Steering Committee Meeting \#1 June 26, 2013
Steering Committee Meeting \#2: October 10, 2013
Steering Committee Meeting \#3: December 11, 2014

- Steering Committee Meeting \#4: April 30, 2014
- Steering Committee Meeting \#5: June 24, 2014
- Steering Committee Meeting \#6: November 5, 2014
- Steering Committee Meeting \#7: April 21, 2015
Steering Committee Meeting \#8: April 29, 2015

3.3 PROJECT WEBSITE

A project website (Figure 3.1) was created and launched in August 2013, as a method to gather input from those that could not or chose not to attend the public meetings. The website was named My West Houston (http://mywesthouston.com) and featured information about the study, a Study Area map, meeting materials, a crowd sourced mapping application that allowed users to geographically locate their comments and view project contact information.

The website was maintained by H-GAC. Over the course of the study, the website saw 6,575 visitors who provided 35 comments.

fwest
 houston
 MOB ILITY PLAN

Final Public Meeting on December 18, 2014!
Posted on December 2, 2014

The Houston-Galveston Area Council will hold the fourth and final public meeting for the Greater West Houston Mobility Study will be held on Thursday December 18, 2014 at Maurice Wolfe Elementary School starting at 6:00 PM. During this meeting the proposed study recommendations will be presented for public review and comment Recommendations will cover changes to the City of Houston Major Thoroughfare Plan, addition and/or expansion of transit services and other alternative transportation modes, bicycle and pedestrian improvements, and government policy changes needed to facilitate implementation

WHEN: 6:00-8:00 PM
This is a free event open to the public

Project Website Crowdmap

Figure 3.1 Project Website
twest
nouston

Figure 3.2 Multi-lingual Public Meeting Flyers/Annuncios de Reuniones Publicos

3.4 PUBLIC MEETINGS

There were four public meetings held throughout the course of the study. These meetings took place during the evenings at locations across the Study Area to try to provide the opportunity for as many people as possible to participate. Figure 3.3 is a map of the public meeting locations. Over 200 people attended the public meetings

STAKEHOLDER AND PUBLIC

 MEETING NUMBER 1October 15, 2013
The first stakeholder and public meetings were held at Wolfe Elementary School, located in the Energy Corridor District. The stakeholder meeting was held from 4:30 5:30 PM and the public meeting was held from 6-8 PM. Each meeting followed a similar format where there was a short presentation to introduce the study, followed by an open house where attendees were encouraged to give their input regarding existing problems and conditions in the Study Area and what transportation improvements or services they would like to see in the future. The room was divided into four broad topics of interest:

- Vehicles/Roadways
- Bicycles
- Transit
- General Mobility

Representative for each topic gathered information about that topic on maps located in each area.

PUBLIC ENGAGEMENT

PUBLIC MEETING NUMBER 2
January 15, 2014
The second public meeting was held at the Tracy Gee Community Center, located in the Westchase District. At this meeting the stakeholders and public were presented with information about the proposed toolbox, intersections to be analyzed, and the expected development scenarios. During the presentation, feedback was encouraged through the use of interactive polling regarding existing travel behaviors and desired mobility options. The questions and a summary of the results are listed in Appendix B.

PUBLIC MEETING NUMBER 3

Figure 3.3
Public Meeting Map

July 22, 2014
A third public meeting was held at the Houston Community College - Spring Branch Campus, in the Memorial
Management District. Attendees viewed a presentation that recapped the results of the study, including traffic projections, example projects, and traffic analysis

Legend

Study

HAC

PUBLIC ENGAGEMENT

PUBLIC MEETING NUMBER 4 December 18, 2014
A fourth public meeting was held once more at Wolfe Elementary School. Attendees were presented with all the study's major findings and recommendations

unest
nouston

PUBLIC ENGAGEMENT

Hact

hwest

ASSESSMENT

ASSESSMENT

4.1
 GROWTH
 SCENARIOS

In order to better understand future conditions and needs in the Study Area, four demographic and land development scenarios were developed for comparison. These scenarios used different parameters and methods to project population and employment growth, as well as land development trends through the year 2040 Each of the scenarios is briefly described below, and depicted in Figures 4.1-4.16.

SCENARIO 1-BASE SCENARIO

 The Scenario 1 forecast is H-GAC's most recent projections (2014, 3rd quarter) by Travel Analysis Zone (TAZ) \dagger, from 2010 through 2040. H-GAC's parcellevel forecasting model generates these projections, which H-GAC aggregates into TAZ geographies. This model tends to produce results that indicate considerable regional centralization of growth, especially for employment. In the West Houston Study Area, this means that locations along the Sam Houston Tollway / Beltway 8 redevelop into much denser employment centers over time, likely via new office development. This forecast is based on the transportation projects in the 2035 Regional Transportation Plan (RTP).

Figure 4.1 Scenario 1 Job Growth

Figure 4.3 Scenario 1 Job Growth

Figure 4.2 Scenario 1 Population Growth

Figure 4.4 Scenario 1 Population Growth

Figure 4.5 Scenario 2 Job Growth

Figure 4.7 Scenario 2 Job Growth

Figure 4.6 Scenario 2 Population Growth

Figure 4.8 Scenario 2 Population Growth

SCENARIO 2 - DISTRIBUTED

 JOB GROWTHScenario 2 is the first forecast to employ the shift-share methodology ${ }_{+1}$. As with Scenario 1, Scenario 2 uses H-GAC figures as the baseline for its projections. The region and county-level control totals for 2040 are calculated by applying the growth rates from CDS' 2012 regional forecast to the 2010 baseline totals given by H-GAC. From these new control totals, the shift-share method calculates the forecast to the TAZ level using growth shares established in the most recent toll road forecast issued by CDS.
These growth shares are based on CDS' assessment of current development patterns for housing and commercial uses, take into account both planned and underway development projects, and consider the market forces which are likely to generate new development or redevelopment in the future. Employmen category shares are also adjusted and AZ level employment category figures are calculated by applying each category's share to the total employment figure in each TAZ. The results of the Scenario 2 model generally produce more decentralization, particularly of employment, than the Scenario 1 model, meaning less intense commercial redevelopment along the Sam Houston Tollway / Beltway 8 corridor. More future growth is also distributed to outlying locations outside of the Study Area compared to the growth in Scenario 1. This forecast is also based on projects which are in the current RTP. A comparison between the Scenario 1 and 2 forecasts can be seen on these pages.

SCENARIO 3 - URBAN
 FRAMEWORK

Scenario 3 considers the land use impacts of potential local government policies and investments, demonstrating the sensitivity of the transportation system to a specific growth pattern. The development policies are assumed to reflect the recommendations of the Urban Houston Framework Case Study, an effort by H-GAC included in the process of creating the agency's Our Great Region 2040 Plan. These recommendations are included as an Appendix to this report. In CDS' forecast modeling, the effects of these policies and investments include the following:

Make localized density of multiple land uses more economically and practically attractive in selected locations.

Enable a more walkable neighborhood environment through changes to street design and operation, investments in pedestrian and bicycle infrastructure, and differently provided and managed parking supply
Provide enhance transportation facilities tailored to serving densely developed areas, most notably public transit.
Potential changes to land use (and population / employment) growth patterns from these measures could include:

- Redistribution of land use growth within a small area to cluster more densely within the area governed by the Urban Framework policies, with less development outside the Urban Framework area. This would
be associated with changes in use; e.g., single family and/or one-story retail less likely and multi-story office and multifamily more likely within an Urban Framework area. The reverse would be true in locations outside of Urban Framework application. These changes may not necessarily entail changes in growth between one TAZ and another, but might occur primarily within single TAZs, depending on where TAZ boundaries fall.

Redistribution of land use (and population and employment) growth patterns from one regional location o another because of:

- Improved regional-level transportation infrastructure (most likely commuter transit) that results in significant differences in travel time or other relevant metrics related to travel convenience and cost and/or
- A significant difference in regional market appeal due to development of a notable "urban center" that, by virtue of its "quality of place" and image, attracts an above-average level of denser development from around the region.
- These changes would likely result in an alteration of projected growth allocation from one TAZ to another. This scenario will demonstrate the sensitivity of the transportation system to a specific growth pattern. The team recognizes that the actual growth patterns that take place by 2040 will likely be a hybrid of several of the patterns considered in this study.

URBAN HOUSTON FRAMEWORK
Houston, Texas
A CASE STUDY FOR THE H-GAC REGIONAL PLAN FOR SUSTAINABLE DEVELOPMENT

City of Houston’s Urban Houston Framework

Figure 4.11 Scenario 3 Job Growth

While still employing a version of the
shift-share methodology, Scenario 3's 2040 forecast is built upon the numbers in Scenario 1 and is quite similar to Scenario 1 in most TAZs. The regional and countylevel forecast numbers for Scenario 3 are identical to those in Scenario 1, and used as control totals for the shift-share method. Shift-share is employed in this scenario only to make adjustments in the TAZs that would be effected by specific transportation mprovements. The employment category forecast was also adjusted for Scenario 3 and the TAZ level numbers calculated using the same method used in Scenario 2.

ASSESSMENT

SCENARIO 4 - SLOWER GROWTH

Scenario 4 is intended to provide an alternative look at Houston's growth potential. It is possible that due to fluctuations in the national or international economy, or a downturn or slowing of the oi and gas industry locally, the Houston region could experience slower growth than H-GAC and CDS have forecast.

In method, Scenario 4 is quite similar to Scenario 2. Using the 2010 base numbers from H-GAC, new region and county control totals are calculated, applying slower growth rates from a Scenario 4 - specific adjusted version of CDS' 2012 regional and county forecast. The shift-share method is again employed to calculate the forecast at the TAZ level and uses the same TAZ growth shares used in Scenario 2. Employment category calculations use the same shares as well.

This scenario considers what the land use impacts of slower growth may be and how that would translate to a different population and employment forecast:

- Given the existing program of transportation improvements planned in West Houston, would slower growth of traffic congestion lead to less pressure either to develop denser housing closer to employment centers, or to distribute employment further to the west to be closer to employee residences?

A more generally moderate economy could lower pressures to create more

Figure 4.13 Scenario 4 Job Growth

Figure 4.15 Scenario 4 Job Growth

Figure 4.14 Scenario 4 Population Growth

Figure 4.16 Scenario 4 Population Growth
vertical, denser projects because land values will not rise as rapidly. Furthermore a slower economy would give developers and financial partners less confidence to undertake costly and risky projects. However, existing centers of population and employment might continue to fill in and thus become denser overall, just perhaps not with rising intensity at the individual project level.

Scenario 4 explores the possibility that slower economic growth may mean (1) less development overall, either for infill redevelopment or for outward greenfield growth; (2) less tendency to develop in higher value, higher density "urban centers"; and (3) a resulting pattern of lower density, non-centralized growth, albeit of a total volume less than the other three scenarios.
\dagger Traffic analysis zones (TAZs) are the basic traftic analysis zones (TAZs) are the basic
geographic units (areas) used for inventorying geographic units areas) used for inventorying
demographic data and land use in transportation planning models (Federal Highway Works Administration (FHWA))
tt Shift-share analysis is a method of decomposing regional income or employment growth patterns into expected (share) and differential (shift) components (A.C. Selting and S. Loveridge, 1992)

SELECTED SCENARIO - URBAN

 HOUSTON FRAMEWORKThe scope of this study requires that a single scenario from the four alternatives be selected for all subsequent modeling and forecasting of traffic volumes, traffic operating conditions and recommendations for improvement projects. The Urban Houston Framework scenario was selected as the preferred scenario by the steering committee.

The demographics of the Urban Houston Framework Scenario are the same as those used by H-GAC for all other forecasting and modeling purposes. This consistency of demographics is important to avoid disputes regarding the fundamentals of the forecast. The Urban Framework has been adopted by he City of Houston and is more likely to be implemented than the development patterns that have prevailed over the past several decades.

The Urban Framework is more conducive to transportation solutions, particularly transit that may be the most practical manner to provide a mobility system that can effectively address forecast travel demand. Land development recommendations in the Urban Houston Framework, by nature, will generate shorter trips and a higher proportion of trips by alternative modes, resulting in lower demand on the roadway network than current and historic development patterns.

Tables 4.1 and 4.2 summarize some of the tenets of the Urban Houston Framework. All three Funding Partner Management Districts are included in that study. Additional information about the Urban Houston Framework is available online at http:// www.houstontx.gov/planning/DevelopRegs urbanhoustonframework/PDFs/FullReport_ UrbanHoustonFramework.pdf

The model forecasts for the Urban Houston Framework Scenario are also shown in the following figures. Figure 4.17 shows the level of service ${ }_{\text {It }}$ (LOS) for select intersections in the Study Area in 2040. An unacceptable amount of delay is projected for all intersections. Table 4.3 provides details of individual intersection LOS. Figures 4.18 and 4.19 show the level of mobility (LOM) for the roadways in the Study Area in 2025 and 2040, respectively. As shown in each figure, the LOM on freeways, tollways, and major arterials will deteriorate substantially between 2025 and 2040 especially east of State Highway 6.
${ }_{t+1}$ Level of Service is the quantitative range of a service. Quality of service describes how well a transportation facility or service operates from the traveler's perspective (Highway Capacity Manual,

TABLE 4.1 - URBAN CENTER CRITERIA														
PREREQUISITE					OPTIONAL CRITERIA									
Urban Center Size + Criteria Threshold	Name	Boundary Used	Average Population + Job Density	Funding Mechanism	Infill Redevelopment Potential (Residential)	Infill Redevelopment Potential (Com., Office, Ind.)	Major Thoroughfare (w/in $1 / 2$ mile)	Major Thoroughfare (w/in $1 / 4$ mile)	Amenities	Food Amenities	Amenity Density	Intersection Density	Bikeways	METRO Transit Stops
LARGE CENTER THRESHOLD Population + Job Density >25	Central Business District	Management District		Yes			Yes	Yes	Yes	Yes	-	Yes	Yes	Yes
			139.34	-	0.32	4.42			359	7	0.32	0.81		
	Texas Medical Center	Super Neighborhood	-	Yes	-		Yes	Yes	Yes	No	-	Yes	Yes	Yes
			68.19	-	2.38	1.63			64	1	0.05	0.26		
	Greater Uptown	Management District	-	Yes	-	-	Yes	Yes	Yes	No	-	Yes	Yes	Yes
			62.37	-	2.91	1.57			154	3	0.19	0.27		
	Midtown	Management District	-	Yes	-		Yes	Yes	Yes	Yes	-	Yes	Yes	Yes
			37.36	-	2.05	0.36			122	6	0.17	1.02		
	Westchase	Management District	-	Yes	-	-	Yes	Yes	Yes	Yes	-	Yes	Yes	Yes
			29.24	-	1.43	1.69			138	7	0.05	0.1		
	Fourth Ward	TIRZ	-	Yes	-		Yes	Yes	Yes	Yes	-	Yes	Yes	Yes
MEDIUM CENTER THRESHOLD Population + Job Density $>12<25$			20.57	-	1.7	1.02			23	0	0.16	1.12		
	Energy Corridor	Management District	-	Yes			Yes	Yes	Yes	No	-	Yes	Yes	Yes
			18.73	-	2.77	3.5			63	0	0.03	0.29		
	Third Ward	Super Neighborhood	-	Yes	-		Yes	Yes	Yes	Yes	-	Yes	Yes	Yes
			17.30	-	0.64	0.78			59	14	0.04	0.63		
	Rice Village	Super Neighborhood	-	No	-	-	Yes	Yes	Yes	No	-	Yes	Yes	Yes
			16.77	-	0.49	0.67			116	4	0.07	0.4		
	City Centre/ Memorial City	Proposed Management District	-	Yes	-		Yes	No	Yes	No	-	Yes	Yes	Yes
			12.51	-	2.71	0.48			32	2	0.05	0.32		
	Greater East End	Management District	-	Yes	-		Yes	Yes	Yes	Yes	-	Yes	Yes	Yes
			10.44	-	1.54	1.37			224	34	0.02	0.47		
SMALL CENTER THRESHOLD	Greater Greenspoint	Management District		Yes	-		Yes	Yes	Yes	Yes	-	Yes	Yes	Yes
			5.33	-	2.54	2.73			127	12	0.02	0.16		
	Palm Center	Super Neighborhood		Yes			Yes	Yes	Yes	Yes	-	Yes	Yes	Yes
Population + Job Density < 12			8.85	-	1.98	1.21			67	13	0.03	0.4		
	Greater Greenspoint	Management District		Yes			Yes	Yes	Yes	Yes	-	Yes	Yes	Yes
			5.33		2.54	2.73			127	12	0.02	0.16		

TABLE 4.2-URBAN CENTER CHARACTERISTICS

1. Reduced Setbacks
2. Connectivity
3. Short Block Lengths
4. Increased Building Height
5. Greater Number of Businesses
6. Civic Amenities
7. Population Density
8. Diversity of Housing
9. Diversity of Housing

9. Higher Floor to Area Ratio
10. Historic Structures/Landmarks
11.

11. Increased Number of Jobs
12. Management Entity
13. Access from Major Roads
14. Access from Minor Roads
15. Park Once, But Do Many Things
16. Parks and Open Space
17. Higher Density of Students
18. Street Intersection Density
19. Reduced Street Width
20. Air Transportation
21. Automobile Transportatio
22. Bicycle Transportatio
23. Bus Transportation
24. Rail Transportation
25. Pedestrian Options
26. Reduced Vacancy Rates
27. Quality Education
28. Security
29. Residential Amenitie

ASSESSMENT

Figure 4.17 Intersection Level of Service

Legend
Study Area Counties

Level of Service

- D
- E - F

TABLE 4.3 - INTERSECTION LEVEL OF SERVICE				

0

LAND USE

With limited undeveloped land available in most of the Study Area, redevelopment is the likely course for construction of new commercial buildings and housing of all types. Moreover, various factors are prompting developers to consider higher density and mixed-use development for new projects. Two of these factors include recent changes to the City of Houston Development Ordinances and changing opinions towards urban living and commuting.

In 2013, the City of Houston amended Chapter 42 of its code of ordinances to allow greater housing density outside of Loop 610 Under the old provisions of the ordinance, the "urban" area inside Loop 610 allowed 27 units per acre, while the "suburban" area outside of Loop 610 was limited to 16 units per acre. The revision is intended to extend the residential density of the Inner Loop throughout the city while providing protections for neighborhoods concerned about incompatible development (Houston Chronicle, 2013).

More interestingly, Houston area residents opinions towards urban lifestyles are beginning to change. Rice University's Houston Area Survey states:
"The Houston region ... is one of the most sprawling, least dense, most automobiledependent metropolitan areas in the county. It is particularly interesting therefore to find in these surveys continued evidence across a variety of questions that area residents now are evenly divided in their support for
improved transit or expanded highways and for living in single-family residential areas or in more urbanized neighborhoods with a mix of developments." (2014)

In the 2014 survey, 51 percent of respondents said they preferred a singlefamily home with a big yard, while 47 percent would like a smaller home in a more urbanized area, within walking distance of shops and workplaces (Houston Area Survey, 2014). Ryan Holeywell notes, "The [survey] results, which are also reflected in recent development patterns, have city leaders, developers and advocates for density buzzing" (Governing, October 2013). Figure 4.20 illustrates the contrasting trends in housing preferences. Prominent examples of mixed-use developments in the Houston area include Hanover Rice Village, West Ave, at Kirby and Westheimer, Pearland Town Center, and City Centre in the Memorial Management District (Houston Chronicle, David Kaplan, 2014).

The Market and Development Density Index developed for METRO as part of their System Reimagining process visually and quantitatively illustrates the locations with he greatest potential for higher density development, especially if served by high quality transit options.

The Index is the weighted average of five demographic and market factors that influence transit-oriented development. These factors include population density, change in population density, transitsupportive employment density, change in
employment density, and assessed property value density. A full description of Index methodology is provided in Appendix E . The Index shows that neighborhoods in and around Houston's major employment centers had relatively high index scores That is true of all the major employment centers (i.e.-Management Districts) in the Study Area, particularly Westchase and Memorial Management Districts

The Index also illustrates in a general way those areas within West Houston that are good candidates for further densification and/or redevelopment. The planned developments listed in Section 2.5 validate this proposition.

Figure 4.20 Houston Residential Preferences (Source: Rice University)

Mixed Use Center Examples - Hannover Center and Renderings of West Ave and City Centre

4.2

PLANNED

 IMPROVEMENTSThere are many transportation-related capital improvement projects that are planned for the West Houston area. Figures on the following pages show both short-term and long-term Study Area transportation projects currently slated for implementation. These projects include automotive, bicycle and pedestrian improvements. The projects are included on one or more of the transportation plans described below.

H-GAC Transportation Improvement Program (TIP)
The TIP is a short-range transportation plan developed and maintained by H-GAC. The planning horizon of the current TIP is 20152018. The TIP is a fiscally constrained plan that has a 4 year time frame. It is updated frequently to capture new transportation projects that are being implemented by local jurisdictions within the H-GAC region. The TIP shows a combination of federally funded and locally funded projects. H-GAC has a call-for-projects every two to three years to program projects for inclusion in the TIP

H-GAC Regional Transportation Plan (RTP)
 The RTP is a long-range (2040)

 transportation plan developed and maintained by H-GAC. The RTP typically has a 20-25 year horizon for all large-scale transportation projects in the H-GAC region. The RTP is not fiscally constrained, meaning that not all projects included in the RTP have designated funding for implementation The RTP is typically updated every five years. Current TIP and RTP Projects are shown in Figure 4.21 and listed in Tables 4.4 and 4.5.
City of Houston Capital Improvement

 Program (CIP)The CIP is a short-range transportation plan of projects slated for construction within the City of Houston. The City's CIP is updated annually and approved by the City Council. The projects in the CIP are not limited to transportation projects, and also include buildings, water and sewer infrastructure and similar capital projects

Fort Bend County Mobility Bond

 Projects (FBCMB)FBCMB is a list of transportation projects in Fort Bend County designated for near-term implementation. The bond program was passed in 2013 by Fort Bend County voters to provide funding for significant roadway projects across the Fort Bend County area City of Houston CIP and Fort Bend County Mobility Bond Projects are shown in Figure 4.22 and listed in Table 4.6

It should be noted that the TIRZs and Management Districts in the Study Area develop CIPs in conjunction with the City of Houston. The projects developed by these entities are included in the City's CIP plan. The projects presented on the following pages are not intended to represent a complete list of projects that will occur in the Study Area. All of these projects may not be built in the short term, but are likely to move forward at some point. There will likely be other projects added to this list as growth and redevelopment continue in the Study Area.

PREVIOUS

RECOMMENDATIONS

More than a dozen transportation studies (Table 4.7) have been conducted in the Study Area over the last 13 years by various entities. The scopes of these studies varied from specific corridor segments to 1,000 square mile regions. All the studies put forth transportation and policy recommendations for improving mobility in Study Area. As part of this study, these previous studies were reviewed to determine the status and validity of their recommendations Where appropriate, previous study recommendations are reiterated in this study to indicate their continued importance. Table .8 summarizes the recommendations of these previous studies.
TABLE 4.4-CURRENT RTP PROJECTS

Project\#	MPOID	$\begin{gathered} \text { CSJ } \\ \text { Number } \end{gathered}$	Street	From Limit	To Limit	Project Descripion	Length (mi)	Existing Lanes	Proposed Lanes
1	6		BELLAIRE BLVD	FM 1464	SAN PABLO DR	CONSTRUCT NEW 4-LANE ROAD	0.75	0	4
2	77		GESSNER DR S	N OF BRIAR FOREST	RICHMOND AVE	WIDEN TO 6-LANES	1.67	4	6
3	111		LITTLE YORK RD W	US 290	houston city LIMITS	WIDEN TO 6-LANE DIVIDED	2.99	4	6
4	2977		BELLAIRE BLVD	BW 8	FONDRENRD	WIDEN TO 8-LANES	2.10	6	8
5	134		RICHMOND AVE	W OF ROGERDALE	WILCREST	WIDEN TO 6-LANES	0.70	4	6
6	2978		DAIRY ASHFORD RD	MEMORIAL DR	BRIAR FOREST	WIDEN TO 6-LANES	1.00	4	6
7	6016		GREENHOUSE RD	HANSTON CT	GREENWIND CHASE DR	CONSTRUCT 4-LANE CONCRETE W/ STORM SEWERS	0.50	0	4
8	7		BELLAIRE BLVD	SH 99	FM 1464	CONSTRUCT 4-LANE BLVD (IN SECTIONS)	4.69	0	4
9	162		BOONE RD	ALIEF CLODINE	WESTPARK	CONSTRUCT 4-LANE ROAD	0.40	0	4
10	165		WILCREST DR	MEMORIAL DR	BELLAIRE BLVD	WIDEN TO 6-LANES	4.74	4	6
11	11547	$\begin{array}{r} 0912-72- \\ 924 \end{array}$	HEMPSTEAD RD	JONES RD	GESSNER	CONSTRUCT 4 MANAGED LANES WITH TWO 2-LANE FRONTAGE ROADS \& DC to BW 8 (TOLL)	1.01	4	4
12	11372	$\begin{gathered} 0912-72- \\ 923 \end{gathered}$	HEMPSTEAD RD	GESSNER DR	43RD ST/CLAY RD	CONSTRUCT 4 MANAGED LANES WITH TWO 2-LANE FRONTAGE ROADS (TOLL)	3.84	4	4
13	7762		PARK ROW BLVD	SUMMITRY CIRCLE	WESTGREEN BLVD	WIDEN TO 4-LANE UNDIVIDED ASPHALT	0.75	2	4
14	7898		FAIRBANKS-N HOUSTON ST	BW 8	US 290	WIDEN 4-LANE TO 6 LANE CONCRETE BLVD	5.78	4	6
15	7792		LITTLE YORK RD W	ELDRIDGE PKWY N	BRITTMORE RD	WIDEN FROM 2 TO 3-LANES IN EACH DIRECTION	2.50	4	6
16	16019	0050-09-	US 290	E OF LITTLE YORK RD W	W OF PINEMONT DR	RESTRIPE TO 10 MAIN LANES WITH AUXILIARY LANES	4.00	11	10
17	16020	0050-09903	US 290	W OF FM 529	W OF LITTLE YORK RD W	RESTRIPE TO 10 MAIN LANES WITH AUXILIARY LANES	1.75	11	10

TABLE 4.5 - CURRENT TIP PROJECTS									
Project\#	MPOID	CSJ Number	Street	From Limit	To Limit	Project Description	Length (mi)	Existing Lanes	Proposed Lanes
1	7649		SAUMS RD	W OF HCFD UNIT U101-02-00 (W OF GREENHOUSE)	HOUSTON CITY LIMITS	WIDEN TO 5-LANE ASPHALT PAVEMENT SECTION W/ STORM SEWER	0.45	2	5
2	5007	$\begin{array}{r} 0912- \\ 71-695 \end{array}$	TANNER RD	TRIWAY LN	HEMPSTEAD	WIDEN TO 4-LANE DIVIDED	1.25	2	4
3	15571	$\begin{gathered} 0271- \\ 07-305 \end{gathered}$	IH 10 W	W OF SH 6	BW 8	RESTRIPE IN SECTIONS TO ADD LANES TO PROVIDE 10 MAIN LANES THROUGHOUT THE PROJECT	4.66	8	10
4	487	$\begin{gathered} 1258- \\ 03-043 \end{gathered}$	FM 1093	FM 1463/FM 359	W OF KATY GASTON RD	CONSTRUCT TWO 2-LN FRONTAGE RDS WITH PARTIAL 4 TOLL LANES FROM W OF SPRING GREEN TO W OF KATYGASTON	2.75	2	4
5	11864		TANNER RD	CAMPBELL RD	TRIWAY LN	WIDEN TO 4-LANE DIVIDED ROAD WITH CURBS AND SIDEWALKS AND NECESSARY UNDERGROUND UTILITIES	1.00	2	4
6	14739	$\begin{gathered} 1258- \\ 03-042 \end{gathered}$	FM 1093	W. OF KATY GASTON RD	SH 99	CONSTRUCT 4 TOLL LANES WITH TWO 2-LANE FRONTAGE ROADS	1.38	2	4

hwest

ASSESSMENT

TABLE 4.6 COH CIP PROJECTS		
Map Ref\#	CIP_NO	Project Description
1	N-001037-0053	Patterson: Sh 6 To N Eldridge Pkwy
2	N-321037-0069	Saums Rd: Barker Cypress To Greenhouse
Roadway Reconstruction Projects		
Map Ref\#	CIP Number	Project Description
77	N-000809-0001	Gessner: Neuens To Long Point
20	M-410005-0001	Pomeran: Westray To ND/E \& S D/E
20	M-410005-0001	Moss Hill: Westray To N D/E \& S D/E
81	N-000815-0001	Westpark: Dairy Ashford To Wilcrest
34	N-000388-0001	Britway: Shadow Wood to Shadow Wood / Nsr 456
34	N-000388-0001	Mayfield: Buescher To Wyclife Dr / Nsr 456
129	N-310650-0083	Dairy Ashord @ Richmond: Trafic Signal Rebuild
108	N-100026-0001	Wilcrest: Il 10 To Buffalo Bayou
20	M-410005-0001	Bandelier: Westray To N D/E \& S D/E
34	N-000388-0001	Wyclife Dr: 228' North Of Day Rd To North D/E/ Nsr 456
20	M-410005-0001	Palo Pinto: Westray To N D/E \& S D/E
128	N-310650-0079	Fire Station \#83 @ 3350 Breezewood: Traffic Signal Construction
131	N-310662-0047	Dairy Ashford North Of Memorial / Roadway Modification
126	N-000650-0071	Gessner @ Richmond: Trafic Signal Management Program
111	N-100029-0002	Kirkwood Paving and Drainage: Buffilo Bayou to Briar Forest
115	N-100033-0001	Walnut Bend: Westheimer to Westpark
94	N-100017-0001	Gessner Paving and Drainage: Westheimer To Richmond-Sub Project 2
20	M-410005-0001	Rosefield: Westray To Kempwood \& S D/E
131	N-310662-0047	Kirkwood @ Meadow Glenn / Left Turn Lane - North
107	N-100023-0001	Dairy Ashford: IH10 To Buffalo Bayou
73	N-000798-0001	Memorial: Eldridge To Kirkwood
94	N-100017-0001	Gessner Paving and Drainage: Buffalo Bayou towards Westheimer-Sub Project 1
20	M-410005-0001	Anniston: Westray To N D/E \& S D/E
34	N-000388-0001	Metronome: Shadow Wood To D/E / Nsr 456
34	N-000388-0001	Wycifife Dr: 228' South Of Day Rd To South D/E / Nsr 456
20	M-410005-0001	Parana: Westray To N D/E \& S D/E
132	N-000650-0067	Fondren @ Clarewood: Traffic Signal Rebuild
128	N-310650-0079	High Star @ Wilcrest: Traffic Signal Construction
34	N-000388-0001	Mayfield: Buescher To Britmoore / Nsr 456
20	M-410005-0001	Southwick: Westray To N D/E \& S D/E
131	N-310662-0047	Richmond (BW8 To Briarpark) / Roadway Modification By Arkk
129	N-310650-0083	Synott @ Richmond: Traffic Signal Rebuild
34	N-000388-0001	Hazelhurst: Buescher To Britmoore / Nsr 456
132	N-000650-0067	Bellaire @ Boone: Traffic Signal Rebuild
20	M-410005-0001	Talina: Westray To ND/E \& S D/E
20	M-410005-0001	Teague: Westray To Kempwood \& S D/E
20	M-410005-0001	Pine Village: Westray To N D/E \& S D/E
99	N-100029-0001	Kirkwood Paving and Drainage: Briar Forest to Westheimer

TABLE 4.6 COH CIP PROJECTS (CONTINUED)		
61	N-000589-0001	Tanner Road: Hempstead To Bw8
127	N-310650-0078	Fire Station \#57 @ 13602 Memorial: Trafic Signal Construction
34	N-000388-0001	Buescher: Hazelhurst To 126' South Of Mayfield To S/De / Nsr 456
132	N-000650-0067	Bellaire @ Cook: Traffic Signal Rebuild
94	N-100017-0001	Gessner Paving and Drainage: Sub Project 3
125	N-000650-0070	Barry Knoll @ Bunkerhill: Trafic Signal Management Program
20	M-410005-0001	Westray: Gessner To Palo Pinto
127	N-310650-0078	Britmore @ Westview: Trafic Signal Construction
34	N-000388-0001	Ivyridge: Buescher To Britmoore / Nsr 456
20	M-410005-0001	Hollow Hook: Westray To N D/E \& S D/E
34	N-000388-0001	Shadow Wood: Britmoore To Wyclife / Nsr 456
Sidewalk Projects		
Map Ref\#	CIP Number	Project Description
119	N-00610A-0113	Lakeside Place: 11306 Lakeside Place To Hayes
120	N-00610A-0125	Knoboak: Stebbins to Shadowdale
	N-00610A-0125	Stebbins: Knoboak to Shadow Wood
	N-00610A-0125	Del Monte: Blue Willow to W Sam Houston Pkwy
	N-00610A-0125	Fondren: S Piney Point To 8800 Woodway
	N-00610A-0125	Richmond: Kirkwood to 11910 Richmond
	N-00610A-0125	Kimberley: Kirkwood to Carlingford
	N-00610A-0125	Westpark: Eldridge Pkwy to Synott
122	N-320610-0002	Clay Rd: 10777 To 11197
Traffic Signal Projects		
Map Ref\#	CIP Number	Location
125	N-000650-0070	Barry Knoll @ Bunkerrill
126	N-000650-0071	Gessner @ Richmond
127	N-310650-0078	Fire Station \#57 @ 13602 Memorial
	N-310650-0078	Britmore @ Westview
128	N-310650-0079	Fire Station \#83 @ 3350 Breezewood
	N-310650-0079	High Star @ Wilcrest
129	N-310650-0083	Dairy Ashford @ Richmond
	N-310650-0083	Synott @ Richmond
131	N-310662-0047	Dairy Ashford North Of Memorial
	N-310662-0047	Kirkwood @ Meadow Glenn
	N-310662-0047	Richmond: From BW8 To Briarpark
132	N-000650-0067	Fondren @ Clarewood
	N-000650-0067	Bellaire @ Boone
	N-000650-0067	Bellaire @ Cook
133	13302	Bellaire Blvd. Drainage ditch (Sierra Bend) to Parkway Lakes Ln
134	13303	Bellaire Blvd. Lakemont Bend Ln to Sierra Bend Dr
135	13304	Bellaire Blvd. Lake Head Ln to S. Mason Rd
136	13202	Bellaire Blvd.

TABLE 4.7 - PRIOR TRANSPORTATION STUDIES		
Study Name	Abbreviaion	Publication Date
Westchase District Mobility Plan	WDMP	2001
H-GAC FM 1093 Access Study	1093AM	2002
Westchase District Long Range Plan	WOLRP	2006
West Houston Association West Houston 2050 Plan	WH2050	2007 2010
H-GAC Regional Commuter Rail Connectivity Study	RCRC	2008
H-GAC SH Management Study	SH6AM	2008
Energy Corridor Plan	ECLCP	2010
Energy Corridor District Bicycle Master Plan	ECBMP	2010
H-GAC Fort Bend Subregional Plan	FBSRP	2011
H-GAC SH 6 North Access Study	SH6NAM	2011
Westchase District Pedestrian/Transit Access Master Plan	WDPTM	2011
H-GAC 2040 Regional Bicycle Plan	2040RPB	2012
City of Houston Urban Houston Framework	COHUHF	2013
METRO Bike \&	MBR	2014

TABLE 4.8 - PRIOR TRANSPORTATION STUDY RECOMMENDATIONS														
Study Abbreviation	WDMP	1093AM	WDLRP	WH2050	RCRC	SH6AM	ECLCP	ECBMP	FBSRP	SH6NAM	WDPTM	2040RPB	COHUHF	MBR
Category/Recommendation														
Roadways														
Extend/Widen Roadway(s)	-	-	-	-					-					
Grade Separation(s)	-			-					-					
Right-of-Way Acquisition/Preservation				-										
Signal Synchronization	-			-										
Intersection Improvements	-	-				\bullet			-	-	-			
Express/Super Street				-										
Transit														
Circulator Services	\bullet		\bullet				-							
Local Fixed Route Service	-			-						-				
High Frequency				-		\bullet			-				\bullet	
LRT/BRT		-	-			-								
Commuter Rail			\bullet		-				\bullet	\bullet				
Park \& Ride (Add/Expand//mprove)							\bullet		\bullet					
Transit Center/Hub		\bullet	\bullet		\bullet		\bullet		\bullet		-			
Bicycle/Pedestrian														
Add/Extend Bicycle-Hike Trail/Lane	-		-			-	-	-	-	-	-	-		-
Add/Extend Sidewalks		-	-			-	-	-		-	-	-		-
Add/Expand Bicycle Facilities/Accommodations		\bullet									\bullet	-		\bullet
Land Development														
Mixed-Use Development		\bullet	-			\bullet	-		-	\bullet	-			
Green Space Conservation			-	-					-					
Urban Street Grid		\bullet	-										\bullet	
Parking		\bullet	\bullet				\bullet		-				\bullet	\bullet
Policy														
Access Management		-								-				
Trafic Impact Analysis													\bullet	
Residential Development Standards				-										
Commercial Development Standards				-										
Land Density Development Standards		\bullet							\bullet				\bullet	
Creat/Amend Ordinance/Regulation/Law												-	\bullet	\bullet
Public-Private Coordination/Partnerships		-							-	\bullet			-	-
Incentives		\bullet										-	-	-

twest
houston

Figure 4.23 2014 Select Zone Analysis

Legend

Study Area Vehicles Per Day
\longrightarrow > 65,000
——20,001-65,000

- 5,001-20,000

0-5,000
\qquad \square Counties
Management Districts

4.3 NATURE OF FUTURE GROWTH

Select zone and trip attraction analyses were performed as part of the examination of the current transportation system in the Study Area. These analyses revealed the extent to which West Houston has become a destination for work and non-work related trips, as shown in Figures 4.23-4.26.

Select zone analysis is a transportation modeling technique that estimates the amount of traffic coming to and from a particular area or place. The goal of trip attraction analysis is to predict the number of trips attracted to an area or to a particular land use. Both techniques were employed on each Funding Partner Management District separately and as a whole to determine individual and combined effects on traffic flow in the Study Area. The combined traffic flows are illustrated in the figures on this page and the following pages.

Figure 4.23 shows the combined select zone analysis for the three management districts. The results indicated heavy traffic flows coming from Fort Bend County, the US 290 corridor, inside Loop 610, and the Spring area. These traffic flows correspond almost identically with the Employee Home Zip Code Maps in Section 2.4.

ASSESSMENT

Figure 4.24 and 4.25 illustrate the trip attraction analysis for all three management districts. There is significant attraction from Fort Bend County, the Cypress area along US 290, and areas West of State Hwy 6. The attractions hold true for non-work as well as work related trips. These analyses, and their information previously presented in this study, indicate that West Houston is a destination in its own right, and not a residential suburb of the City of Houston. West Houston a city within a city, and from a traffic perspective it functions as such.

Takeaways from the forecasting and

 analysis process include the realization and acceptance that there are very significant mobility challenges that cannot be overcome by continuation of past practices. Even small amounts of growth in the Study Area result in significant increases in delay to vehicle traffic. Participants in the public outreach process seem to be open to solutions other than traditional addition of capacity, including walking, cycling, ride sharing, and increased transit use. The most significant source of improvement in the person-carrying capacity of the street network would be increased vehicle occupancy. While this will require behaviora changes, the capital and operating costs of higher occupancy trips are insignificant compared to any other alternatives for all but the shortest trips.

Figure 4.24 Work Trip Attractions

Legend

Study Area
\square Counties
\square Management Districts

Work TipAAtractions

<100 Trips 24%
100-250 Trips 23\%
| 251 - 500 Trips 21%
> 500 Trips 57%

ASSESSMENT

ASSESSMENT

4.4
 CONTEXT SENSITIVE DESIGN

Recently, the City of Houston and TxDOT have acknowledged the need for a multimodal approach to transportation planning, and both have adopted policies to achieve this objective. On November 1 2013, Houston Mayor Annise Parker issued an executive order establishing the Houston Complete Streets and Transportation Plan. The plan calls for the City to take a more comprehensive view of planning, designing, constructing and reconstructing all transportation improvements. The plan states that "[p] ublic roadways take into account all users including people who are driving or riding in cars, using mass transit, using wheelchairs, driving or riding in trucks, driving or being transported by emergency vehicles, and being served at their residence or property by other users..." (COH Executive Order 1-15).

Shared Use Path in the Westchase District

MIxed Use Streetscape

Human Scale Planning

Similarly, TxDOT has adopted guidelines emphasizing bicycle and pedestrian accommodations in the construction and reconstruction of State roadway facilities. In a memorandum dated March 23, 2011 TxDOT Deputy Executive Director John Barton, P.E., stated "[w]ith this stronger emphasis for multimodal transportation acilities, TxDOT is committed to proactively plan, design, and construc facilities to safely accommodate bicyclists and pedestrians". (Memo, J. Barton, 3-23 2011).

The policies adopted by the City of Houston and TxDOT are examples of context sensitive design (CSD). CSD is a holistic approach to transportation facility design and construction. CSD is responsive to the environment in which the facility is built, as well as the characteristics of the current and future users of the facility. In contrast to long-standing practices in transportation design that place primary importance on moving traffic, CSD emphasizes that transportation facilities should fit their physical settings and preserve scenic, aesthetic, historic and environmental resources, while maintaining safety and mobility.

The range of recommendations offered in this study should be designed and constructed using CSD principles, which include:

- Significant involvement of the public and continuous solicitation of input;

Cooperation of highway agencies with a variety of resources and other public agencies throughout the development of the project;

- Willingness of the designers to accept and try alternative solutions as well as to deviate from standard designs,
Inclusion of specialists other than highway designers in the design teams to provide different viewpoints; and
- Use of a variety of tools for communicating project alternatives and designs.
(CSD, Transportation Research Board Circular, 2004)

IMPROVEMENT OPPORTUNITIES

IMPROVEMENT OPPORTUNTITES

5.1 BUILT ENVIRONMENT

In addition to the current projects identified in the H-GAC RTP and TIP, as well as these Fort Bend County Bond projects within the Study Area (See Section 4.2), the following infrastructure projects should be considered to help further alleviate congestion and provide improved transportation choices in West Houston.

Recommendations presented in this study are intended to represent a vision of what the Study Area transportation system could look like. Recommendations are not representative of what can be built today. Furthermore, study recommendations do not obligate any public and/or private entity within the Study Area to construct said infrastructure, provide said services, or adopt or modify their current policies.

The following restrictions apply to infrastructure in unincorporated Harris County:

Sidewalks are not encouraged along Major Thoroughfares, but are considered a priority within residential subdivisions and around schools
Shared-use paths (as defined in the 2012 AASHTO Guide for the Development of Bicycle Facilities, the 2011 Texas Manual on Uniform Traffic

Control Device, and/or any local municipality ordinance or executive order) are constructed by the County. Where appropriate the County encourages partnership with other entities to build such facilities adjacent to the road right-of-way

Bike lanes, or variants thereof, are not constructed along roadways

MTFP TABLE ADDITIONS

The roadway segments listed in Table 5.1 (and shown in Figure 5.1) are displayed on the City of Houston's MTFP map, but are not currently listed on the MTFP and Transit Corridor Street Hierarchy Classification Table (Table 5.2). Traditionally, roadway segments in the City of Houston's ETJ are not listed in the MTFP table because the City's street classifications cannot be enforced outside of its city limits. While the MTFP map provides the limits and corridor designation type (i.e. thoroughfare, collector etc.), it does not provide the same level of detail as corridors listed on the MTFP table including number of lanes and existing/ future right-of-way width. These roadway segments should be placed on the MTFP table to provide land developers and others with the same level of information on these corridors when making decisions regarding land use projects

IMPROVEMENT OPPORTUNITIES

COLLECTOR STREET NOMINATIONS

The roadway segments listed in Table 5.2, and shown in Figure 5.2 are currently classified as local streets. The traffic flow patterns and volumes on these streets suggest that their classification should be upgraded. These roadways were selected after careful analysis because they (1) connect major thoroughfares already on the MTFP; (2) connect freeway frontage roads to major thoroughfares already on the MTFP; (3) are corridors that relieve traffic stress from existing major thoroughfares; and (4) typically avoid neighborhood streets as much as possible.

The City of Houston should consider adding these roadway segments to the MTFP map and MTFP table. Adding these roadway segments to the MTFP will help preserve the existing connectivity of the roadway network and aide in servicing future traffic demand in the West Houston. Below are a set of criteria that were utilized in developing these recommendations.

Figure 5.2 Collector Streets

TABLE 5.2 - COLLECTOR STREET NOMINATIONS				
Map Ref. \#	Roadway	Segment	Location	Recommended MTFP Classification
1	Greenwind Chase	Barker Cypress to Fry Road	City	Minor Collector
2	Barker Road	I 10 to Greenwind Chase	City	Minor Collector
3	Winkelman Road	Bellaire to Alief Clodine	ETJ	Minor Collector
4	Chisel Point Dr.	Katy Freeway to Kingsland	City	Minor Collector
5	Mechants Way	Grand Circle Blvd to Katy Freeway	ETJ	Minor Collector
6\&7	Elrod	Franz to Clay	ETJ	Minor Collector
8	Raintree Village Dr.	Franz to Clay	ETJ	Minor Collector
9	Westfield Village	Clay to Kieth Harrow	ETJ	Minor Collector
10	Windsong Trail	Clay to Kieth Harrow	ETJ	Minor Collector
11	Park Ten	Katy Freeway to Park Row	City	Major Collector
12	Addicks- Sastuma/Timber Creek	FM 529 to SH 6	ETJ	Major Collector
13+14	Windern	US 290 to Clay	City	Minor Collector
15	Wingfoot	Blalock to Windfern	City	Minor Collector
16	Neuens	Blalock to Gessner	City	Minor Collector
17	Witte	Katy Freeway to Neuens	City	Minor Collector
18	Sugarland Howell	Bellaire to Alief Clodine	ETJ	Major Collector
19	Hayes Road	Richmond to Wilcrest	City	Major Collector
20	West Houston Center Blvd	Westheimer to Westpark Tollway	City	Major Collector
21	Rogerdale	Harwin to Bellaire	City	Major Collector
22	Jeanetta	Westheimer to Westpark Dr	City	Minor Collector
23	Pagewood/ Windswept	Fondren to Tanglewilde	City	Minor Collector
24	Tanglewilde	Pagewood to Westpark	City	Minor Collector
25	Town Park Dr.	Gessner to Bugle	City	Minor Collector
26	Seagler/ Westcenter	Westheimer to Westpark Dr	City	Minor Collector
27	Whittington	Dairy Ashford to Eldridge	City	Minor Collector
28	Tully	Katy Freeway to Memorial	City	Minor Collector
29	Westlake Park Blvd.	Katy Freeway to Memorial	City	Minor Collector
30	Addicks-Howell	SH 6 to Katy Freeway	City	Minor Collector

ROADWAY PROJECTS

Table 5.3 lists roadway project recommendations (Shown in Figure 5.3) for the West Houston Study Area in addition to those currently listed in H-GAC's RTP and TIP, or the City of Houston's CIP or Rebuild Houston Program (See Section 4.2). The proposed projects are only conceptual and each will require independent stakeholder collaboration, advanced planning, preliminary engineering, and final design. The purpose of these projects is to reduce traffic stress on corridors in West Houston that are already (or will soon be) congested by providing alternate connections within the Study Area. It is anticipated that all these projects will be completed in 5 to 15 year time frame.

Figure 5.4 is a map of the top 13 intersections in the Study Area that will experience the most traffic delay in the future due to excessive traffic demand. Candidate intersections were selected based on unmet demand in 2040 for each street of each intersection. Where unmet demand was a range of volumes, the midpoint (average) of the range was used. The sum of the unmet demand for the cross streets was used to select intersections with the most unmet demand. The list is based on demand only, not the availability of ROW or engineering considerations that would have to be resolved to advance a project. Improvements at these intersections could range from addition of dedicated turn lanes to grade separation of travel lanes

Subsequent research on the selection of improvements for these intersections should include the following considerations:

- Development that would be affected on each approach
- Driveways to be closed
- Alternative access provided
- Damages
- Total takings
- Drainage considerations
- Underground utilities to be relocated
- Grade Separation decisions
- Adjacent intersections and operating conditions
- Nature of the streets

Well-planned sidewalks, multi-use paths and trail networks can complement existing mobility infrastructure and provide much needed multimodal travel opportunities. The thoughtful placement of pedestrian- and bicycle-friendly connections can improve access to parks and open space, promote walking and biking to neighborhood civic or retail destinations and garner a heightened sense of community. West Houston has an extensive network of sidewalks, multi-use trials, and on-street bicycle facilities (See Section 2.8). However, this network can be improved by building proposed facilities, connecting existing facilities, and linking facilities to other modes of travel.

The installation of sidewalks or multi-use trails along under utilized utility corridors and drainage channels is encouraged. Pedestrian bridges can improve connectivity across physical barriers such as drainage corridors. Communities should also partner with bayou greenway organizations to retrofit inactive spaces to accommodate more pedestrian connectivity.

Opportunities for intra-neighborhood, interneighborhood, and sub-regional trails often exist along edges and boundaries between adjacent subdivisions, between phases of a given subdivision, and between residential lots and utility areas and corridors (detention ponds, drainage channels, petrochemical pipeline easements, and electric power line easements). These opportunities should be identified corroboratively with developers early in subdivision plan development phase. Trail alignments, access easements, and future trail/street crossing locations should be designed into subdivision plans.

Previous studies have made numerous bicycle and pedestrian related recommendations. These recommendations should be implemented, where still applicable. The following statements in many ways summarize and echo the recommendations in these previous studies

- Connect activity centers

Connect facilities to transit and park and rides
Cross barriers-creeks, drainage channels, reservoirs and highways Utilize utility corridors to enhance offstreet connections

Continue to build-out the off-street trail network

Complete system gaps

- Provide multimodal accommodations, where appropriate, as streets are constructed or rebuilt

To maximize safety, all network facilities should be implemented in conformance with crime prevention though environmental design principles and the American with Disabilities Act (ADA) Standards for Accessible Design. These standards help to ensure these facilities are safe and accessible for all users.

Figures 5.5-5.13 on the following pages are conceptual maps of potential bikeway and trail network segments and crossings in the Study Area. The locations of key civic and commercial amenities such as schools, churches, hospitals and major retail centers are identified to show the potential benefits of network segments. A map locator grid is on each map

IMPROVEMENT OPPORTUNITIES

IMPROVEMENT OPPORTUNITIES

TABLE 5.3 ROADWAY PROJECT RECOMMENDATIONS							
Map Ref. \#	Roadway	Segment	Recommendation	On MTFP Map	On MTFP Table	Location	Comments
1	Addicks- Satsuma/Timber Creek	FM 529 to SH 6	Widen			ETJ	This corridor lies in the northern portion of the study area, between SH 6 and N Eldridge Parkway, both of which already have high traffic volumes and are projected to have significantly higher traffic volumes in the future. Addicks-Satsuma serves as a north/south connection between FM 529 and West Little York. South of West Little York, Addicks-Satsuma turns west and meets SH 6 at the northern edge of Addicks Reservoir. The current roadway configuration of Addicks-Satsuma is one traffic lane in each direction, with open ditches on either side. The proposed project would replace the open ditches with culverts and widen the roadway to two traffic lanes in each direction to help relieve traffic on the major thoroughfares in the immediate area.
2	Jack Rabbit Road	FM 529 to Little York	Extend			ETJ	Jackrabbit Road currently exists from FM 1960 (near US 290) FM 529. The proposed project would extend Jackrabbit Road from FM 529 southward to West Little York and help to relieve SH 6 and N Eldridge Parkway from current and future traffic congestion. If extended, the corridor would effectively serve as a direct route from West Little York to US 290.
3	Jones Road	FM 529 (Spencer Road) to Little York	Realign	\bullet		ETJ	Jones Road was extended to FM 529 (Spencer Road) in 2011. The current MTFP should be amended to remove the Melendy/Cunningham alignment and extend and widen Northwinds Dr to Cunningham Road. This realignment would provide north-south connectivity from Tanner Road to SH 249.
4	Windfern-US 290	US 290	Connect			City	brook Dr. on the northern end, near Betlway 8. However,
5	WindfernHempstead	Hempstead Rd.	Connect			City	assist in relieving trafic congestion along Gessner Dr.
6A	Mason Road	Clay Rd. to Stockdick School Rd.	Realign	\bullet		ETJ	Ma
6B	Mason Road	Morton Rd. to l-10	Widen	\bullet		ETJ	major intersections due to the alignment of the Grand Parkway. The currently alignment of Mason Road at Stockdick School Road would place the intersection within 700 feet of the intersection at Stockdick School Road and the Grand Parkway. Traffic Engineering standards state that major intersections should be at least one-quarter mile (1,320 feet) apart for good traffic progression. The proposed realignment would move the Mason Road-Stockdick
6 C	Mason Road	Rocky Canyon to FM 1093 (Westheimer Rd.)	Widen	\bullet		ETJ	volumes. Likewise, (6C) Mason Road between Rock Canyon Drive and the Westpark Tollway should be widened to 6 lanes to meet trafic demands.
7	Baker-Cypress Road	$\underset{1-10}{\text { Little York Rd. to }}$	Widen	\bullet		ETJ	Baker-Cypress is the first major north-south through route west of SH 6. The segment between I-10 and Little York Rd. currently carry from 25,000 to 30,000 vehicles per day. By 2040, traffic volume on this segement of BarkerCypress is projected to increase 20%. Widening the roadway to 6 lanes will relieve congestion by adding the capacity needed for the projected traffic volumes.
8	Patterson	Elderidge Pkwy to Hammerly (@ Brittmoore)	Extend			City	Patterson Road currently connects SH 6 to Elderidge Parkway through the Addicks Reservoir. Patterson is currently listed on the MTFP as a thoroughfare to be widened in the future. The extension of Patterson to Hannerly Blvd would provide additional east-west connectivity to meet project travel demands in 2040 . When Patterson is aligned with Groeschke Road (See Number X), the combined corridors will provide east-west connectivity from US 290 to the Grand Parkway, and serve as a effective alternative route to the Katy Freeway.
9	Wycliffe/Upland Drive	Hammerly to Katy Freeway	Connect			City	The northwest quadrant of the intersection of Bettway 8 and the Katy Freeway is currently underdeveloped and according to the growth projection models utilized in this study, will likely develop into higher density land uses in the future. The lack of connectivity in this particular area is likely to be a challenge as the redevelopment occurs. Currently, Brittmoore is the only corridor between Beltway 8 and Addicks Reservoir that extends from the Katy Freeway to US 290. As the density of land uses increases along this portion of the Beltway 8, Britmoore is likely to exceed its traffic capacity according to the travel demand model. An additional connection that would relieve some traffic pressure from the southern end of Brittmoore could be Timberline Road. A connection could be made from Wycliffe Drive and aligned with Church Lane at Brittmoore. Church Lane could then be extended to Clarborough Place to provide connectivity to the Beltway 8 frontage road and Westview Drive.
10	Grisby	SH 6 to Westlake Park Blvd.	Extend			City	Grisby Rd. is currently on the MTFP from its connection to the Katy Freeway frontage road (between Barker Cypress and SH 6) to SH 6. The recommendation of this study is to consider extending Grisby westward along its current alignment to Barker Cypress. If constructed, it would serve in a similar capacity to Park Row on the north side of the Katy Freeway. The proposed alignment is very close to the Barker Reservoir, so special attention would need to be given to avoiding conflicts with the protected reservoir.
11	Addicks-Howell	SH 6 to Katy Freeway	Widen			City	Along SH 6, just south of Memorial Dr., Addicks-Howell Rd. diverges from the SH 6 alignment and continues to the Katy Freeway frontage road. The alignment is currently one traffic lane in each direction, with open ditches on both sides of the roadway. The recommendation is to consider widening the roadway to accommodate two traffic lanes in each direction from SH 6 to the Katy Freeway frontage road. It is possible that the overhead utilities would have to be moved as well. The benefit of this project is to relieve congestion along SH 6, particularly at the intersections of Memorial Dr. and the Katy Freeway frontage road.
12	Baker Road	Barker Road to Highland Knolls	Abandon	\bullet	\bullet	City	Currently, the MTFP map recommends acquiring right-of-way through the Barker Reservoir for future connection between Baker and Highland Knolls, just south of IH 10.This alignment should be abandoned and realigned due to the recommended extension of Briar Forest to Highland Knolls (See Number X). However, to accommodate north-south traffic demand Greenhouse Road should be extended to Barker Rd and then down to the proposed extension of Briar Forest.

IMPROVEMENT OPPORTUNITIES

TABLE 5.3 ROADWAY PROJECT RECOMMENDATIONS

Map Ref. \#	Roadway	Segment	Recommendation	On MTFP Map	On MTFP Table	Location	Comments
13	Briar Forest	SH 6 to Highland Knolls	Extend			City	The MTFP currently shows Memorial Drive extending across the Barker Reservoir to Kingsland Drive. Projected traffic volumes necessitate adding an additional east-west corridor across Barker Reservoir to balance traffic demand and preserve the capacity of other roadways like Memorial Drive, FM 1093 (Westheimer Rd.), Richmond Ave, and Westpark Drive. It is therefore recommended that Briar Forest be extended across Barker Reservoir to Highland Knolls. Although the acquisition of right-of-way will require extensive local, state, and federal review, the traffic benefits derived from this corridor by 2040 will ultimately offset the prolong planning process and higher construction costs.
14	Grand Mission	Westpark Tollway to Westheimer Parkway	Abandon	\bullet	\bullet	ETJ	The MTFP map currently shows a planned roadway segment along the Grand Mission alignment between Westpark Tollway and Westheimer Parkway. The proposed alignment lies within the Barker Reservoir and requires a crossing of Buffalo Bayou. Since the proposed alignment lies within the Barker Reservoir, the proposed project must go through extensive evaluation and review by local, state and federal agencies before the project can move forward, causing the financial cost to be escalated. Since there is no development in the Barker Reservoir, there seems little gained from making the proposed connection along the Grand Mission alignment. The same connection can be made via Westheimer Rd. or Mason Rd. without having to acquire land and construct a roadway along the Grand Mission alignment.
15	FM 1093 (Westheimer Rd.)	SH 6 to Westpark Tollway	Widen	\bullet	\bullet	City	Westheimer Road between SH 6 and the Westpark Tollway is already one of the busiest arterial roadway segments in the Houston area. Currently traffic volumes on this segment of Westheimer are over 60,000 vehicles per day, which is the same capacity as a limited access freeway. Traffic volumes are projected to increase by 25% by 2040 . Widening this segment of Westheimer Rd. to 8 lanes will provide the capacity needed for the additional traffic volumes.
16	Richmond Avenue	Wilcrest Dr. to FM 1093 (Westheimer Rd.)	Widen	\bullet	\bullet	City	Richmond Avenue is one of two major arterial roads between Westheimer and the Westpark Tollway. Widening Richmond will provide additional roadway capacity to handle the project trafic volumes by 2040.
17	Meadowglen	Cross BW 8	Connect			City	The Meadowglen Dr. corridor is an east/west alignment that lies between Richmond and Westheimer in the Westchase District area. The corridor extends from Kirkwood on the western end to Gessner on the eastern end, however it does not cross Bettway. 8 . The recommendation is to consider a grade separated connection spanning the Bettway 8 right-of-way to Rogerdale on the western side. This proposed connection of Meadowglen would alleviate some of the current and future traffic demand on Richmond and Westheimer.
18	Westpark Drive	$\begin{array}{\|l} \text { Gessner Rd. to } \\ \text { SH } 6 \end{array}$	Widen	\bullet	\bullet	City	Westpark Drive is the other major east-west arterial roadway between Westheimer and the Westpark Tollway. Varies segments of Westpark has been fully or partial completed. It is recommended that Westpark be fully built out and widened to 6 lanes to accommodate projected traffic volumes and service to relieve traffic demand on Westheimer Rd., Richmond Ave, and the Westpark Tollway.
19	Town Park Drive	Cross BW 8 and utility ROW	Connect			City	The Town Park Dr. corridor is an east/west alignment that lies between Harwin and Bellaire, just south of the intersection of the Westpark Tollway and Beltway 8. Currently, the Town Park Dr. corridor extends from Gessner to Synott, changing names to High Star Dr. near Wilcrest. However the corridor does not currently extend across Beltway 8 or a drainage way between Rogerdale and Wilcrest. The recommendation of this study is to consider a grade separation along the Town Park Dr. alignment at Beltway 8 and a bridge over the drainage way between Rogerdale and Wilcrest.
20	$\begin{aligned} & \text { Dairy Ashford } \\ & \text { Drive } \end{aligned}$	Westpark Tollway to Bellaire Blvd.	Widen	\bullet	\bullet	City	It is recommended that Dairy Ashford be widened to 6 lanes with a shared use path between Westpark Tollway and Bellaire to accommodate projected traffic volumes and to service the pedestrian traffic around the public schools and other facilities along this segment of the roadway.
21	Sugarland Howell	Alief Clodine to Richmond	Connect			ETJ	Sugarland-Howell Rd. is a north/south corridor in the southern portion of the study area that lies between Eldridge Pkwy. and SH 6. Sugarland-Howell Rd. currently terminates on the southern end at Old Richmond Rd. (south of Bissonnet St.) and terminates on the northern end at Alief Clodine, near the Westpark Tollway. The proposed project would require an elevated roadway to be constructed across Westpark Tollway and an existing pond before coming down to grade near Westpark Dr. From that point, a connection could be made to the existing Westhollow Dr. which continues all the way to Westheimer. The proposed project would relieve congestion from both Eldridge Pkwy. and SH 6 , while providing connectivity to Westpark Dr., Richmond Ave. and Westheimer.
22	Groeschke	Barker-Cypress Rd to SH 6	Realign	\bullet	\bullet	City	Preliminary design concepts have been developed for the West Houston Airport to extend the main runway from 3,953 feet to 5,000 feet. The proposed extension would necessitate the realignment of Groeschke Road. Final alignment would depend upon the airport receiving approval for the runway extension. The realignment of Groeschke Road should be coordinated with the extension of Patterson Road to ensure that the two roads align.

Figure 5.4
Intersection Improvements

INTERSECTION	IMPROVEMENTS
Map Ref\#	Location
1	Clay @ Britmoore
2	Memorial @ Elderidge
3	Briar Forest @ Dairy Ashford
4	Briar Forest @ Kirkwood
5	Briar Forest @ Wilcrest
6	Westheimer @ SH 6
7	Westheimer @ Elderidge
8	Westheimer @ Wilcrest
9	Westheimer @ Beltway 8
10	Alief Clodine @ Diary Ashford
11	Harwin @ Wilcrest
12	Westpark @ Briarpark
13	Harwin @ Ranchester

Legend

\square Study Area
Improvement Intersections

P Park \& Rides

* Bike Path Street

Crossing
""n"un"un"w Gap or Potential Link

- =- =- = . Proposed Bike Paths
_Bike_Paths
- Proposed Steet High Volume
——Steet High Volume
Proposed Street LowMed Volume
__ Street Low-Med Volume
(1)

Figure 5.6

Legend

\square Study
P Park \& Rides

* Bike Path Street

Crossing
"""nu"nu"un" Gap or Potential Link

- =- = = = Proposed Bike Paths
__ Bike_Paths
- =- =. . Proposed Steet High Volume
LSteet High Volume
Proposed Street LowMed Volume

Street Low-Med Volume
0

Figure 5.7

Legend

\square Study
\square Counties
P Park \& Rides

* Bike Path Street Crossing
""w"un"un" Gap or Potential Link
- =-=- = Proposed Bike Paths
___ Bike_Paths
- =- =- . Proposed Steet High Volume
Steet High Volume
Proposed Street LowMed Volume
— Street Low-Med Volume
©

P Park \& Rides

* Bike Path Street

Crossing
"n"unumunu Gap or Potential Link

- - =- - - Proposed Bike Paths
——Bike_Paths
- =. =. = , Proposed Steet High Volume
Steet High Volume
Proposed Street Low Med Volume
- Street Low-Med Volume

Figure 5.10
Bicycle and Pedestrian Facility Feasibility Section B3

Legend
ITudy
\square Counties
P Park \& Rides

* Bike Path Street

Crossing
""w"un"w"u" Gap or Potential Link

- =-=-= Proposed Bike Paths
_Bike_Paths
- - =- =. . Proposed Steet High Volume
Steet High Volume
Proposed Street LowMed Volume

Street Low-Med Volume

Legend
THudy
Counties
P Park \& Rides

* Bike Path Street

Crossing
"""w"w"w" Gap or Potential Link

- - - = - , Proposed Bike Paths
——Bike_Paths
- Proposed Steet High
_Steet High Volume
........ Proposed Street Low-
- = = = " Med Volume
_- Street Low-Med Volume
hwest

Legend
'-
O
P Park \& Rides

* Bike Path Street Crossing
""un"u"unu" Gap or Potential Link
- - =- =- . Proposed Bike Paths
_—Bike_Paths
- =- =. - Proposed Steet High Volume
Steet High Volume
Proposed Street LowMed Volume

Street Low-Med Volume

Legend
ETtudy
\square Counties
P Park \& Rides

* Bike Path Street Crossing
"w"w"wn"u Gap or Potential Link
-- - - - Proposed Bike Paths
——Bike_Paths
....... Proposed Steet High
Volume
- Steet High Volume
. Proposed Street Low-
Med Volume
Street Low-Med Volume

IMPROVEMENT OPPORTUNITIES

5.2 SERVICE OPPORTUNITIES

In order to preserve adequate mobility in the Study Area, transit and alternative mode services will play an increasing vital role. As previously mentioned, nearly 25 percent of METRO's 2013 average daily ridership is on local routes that operate in the Study Area. With the launch of METRO's new local bus network (METRO NBN) that percentage should increase substantially. The recommendations below include enhancements to METRO NBN, as well as recommendations to expand alternative modes that complement transit or serve as additional travel modes. Table 5.4 lists the transit enhancements that will help maintain and/or boost ridership under METRO NBN. Recommendations include capital projects to enhance operations, policy changes to test and meet untapped demand, and concepts for future high capacity service.

Service and facility recommendations are shown together in Figure 5.17. Individual routes are shown in greater detail in Figures 5.18 and 5.19

Fort Bend County Transit (FBCT) is in the preliminary stages of constructing a Park \& Ride facility along the Westpark Tollway The facility is located in 19800 block of FM 1093 near Mason Road. The facility will initially provide 262 parking spaces (Figure 5.20), and is will offer direct service to Greenway Plaza and Uptown/Galleria. The facility is expected to begin operating in 2016.

FBCT should explore formal Interlocal agreements or partnerships with METRO to provide express bus service in METRO's Service Area. This includes current routes outside the Study Area. FBCT routes currently stop at METRO Park \& Rides to afford passengers the opportunity to transfer to and from METRO routes. Formal Interlocal Agreements would help synchronize services to reduce transfer wait times as well as pave the way for a common fare box system

To complement METRO NBN in the Study Area, Enhanced Transit Transfer Areas (ETTAs) are proposed primarily at locations were two high frequency routes intersect (Figure 5.19). These ETTAs would provide ease of transfer from one route to another with pedestrian intersection improvements upgraded bus shelters, lighting, security, and dynamic information systems (Figures 5.15 and 5.16).

Each Funding Partner Management District should develop or refine one or more circula shuttle services within their districts. These circulars provide vital "last mile" service to and from existing or future transit facilities. Circulars should be coordinated with other services at these facilities to minimize wait times and allow seamless transfer from one mode to another. The circulars would provide a level of convenience needed to encourage daily commuters to use transit Circulator services could be created through partnerships with METRO similar to the 75 Elderidge Crosstown route between METRO and the Energy Corridor. Such partnerships
would be beneficial to both METRO and Management Districts by lowering METRO's operating costs and allowing to management districts to avoid huge capital outlays for vehicles and drivers

Metro National is considering expanding the operating hours of Memorial City shuttle (See Figure 2.46) as demand warrants This service should be coordinated with METRO routes and facilities in the Memoria Mall area to provide enhance services and boost ridership on both services. Likewise, the Energy Corridor District has proposed additional circulator service to enhance utilization of the Addicks Park \& Ride/ Transit Center (Figure 5.20). Westchase Management District's Long Range Strategic Plan calls for the development of a district circulator service (See Figure 5.14) to complement both current and future transit services in the area.

Rideshare, carpool and vanpool service utilization will have to be expanded substantially to meet the unmet demand in West Houston. These services should be coupled with car sharing services, guaranteed ride home, flexible work schedules, and tele-working to give employees true options when and if they choose to commute. These services will equire the participation of virtually all employers in the Study Area to truly be successful. Therefore, local jurisdictions, management districts, and other area partners will have to develop ways to incentive participation in these programs

Figure 5.16
Figure 5.16
Gessner and Westheimer Proposed Improvements

TABLE 5.4-TRANSIT ENHANCEMENTS				
Timeframe	Category	Type	Descripition	Comments
Short	Service	Circulator Bus	Energy Corridor Circulator	Facilitates short trips within Energy Corridor. Could be its own route or more frequent turnback service of Routes 67/75/162; to be designed funded by Management District.
Short	Service	Circulator Bus	Westchase Circulator	Faciiltaes short trips within Westchase. To be designed and funded by Management District.
Short	Service	Express Bus	Nonstop service from Memorial City to Addicks P\&R using Katy Freeway	Provides high-speed connection between Energy Corridor and Memorial City. Could be extension of Route 160.
Short	Service	Local Bus	Park Row: Addicks P\&R to Fry Road	Serves apartments, offices, hospitals and HCC campus along Park Row. 60 min base headway; Could be new route or extension of Route 32 or 33
Short	Service	Local Bus	FM 1960/SH 6: Willowbrook Mall to Addicks P\&R	Connects Energy Corridor to development along FM 1960/SH 6 corridor and Willowbrook Mall. 30 min base headway.
Short	Service	Signature Bus	Extension of Route 402 (Bellaire Quickline) to Mission Bend P\&R	Limited stops and frequent headways; operates during weekdays only.
Short	Service	Signature Bus	Westheimer Quickline: Downtown to West Oaks Mall	Limited stops and frequent headways; operates during weekdays only.
Short	Service	Signature Bus	Gessner Quickline: West Airport to West Little York P\&R	Limited stops and frequent headways; operates during weekdays only.
Short	Capital	Enhanced Transfer Point	Bellaire at Gessner	Provided at areas of frequent transfer activity; increases rider safety and comfort by providing shelters, lighting, ramps, special crosswalk treatment, landscaping, etc.
Short	Capital	Enhanced Transfer Point	Bellaire at Fondren	Provided at areas of frequent transfer activity, increases rider safety and comfort by providing shelters, lighting, ramps, special crosswalk treatment, landscaping, etc.
Short	Capital	Enhanced Transfer Point	Beechnut at Wilcrest	Provided at areas of frequent transfer activity; increases rider safety and comfort by providing shelters, lighting, ramps, special crosswalk treatment, landscaping, etc.
Short	Capital	Enhanced Transfer Point	Westheimer at Gessner	Provided at areas of frequent transfer activity; increases rider safety and comfort by providing shelters, lighting, ramps, special crosswalk treatment, landscaping, etc.
Short	Capital	Enhanced Transfer Point	Westhemier at Wilcrest	Provided at areas of frequent transfer activity; increases rider safety and comfort by providing shelters, lighting, ramps, special crosswalk treatment, landscaping, etc.
Short	Capital	Enhanced Transfer Point	Westheimer at Eldridge	Provided at areas of frequent transfer activity; increases rider safety and comfort by providing shelters, lighting, ramps, special crosswalk treatment, landscaping, etc.
Short	Capital	Park and Ride	West Bellfort P\&R Expansion	Current facility is at parking capacity.
Medium	Service	Circulator Bus	Memorial City - Citycentre Circulator	Facilitates short trips within Memorial City. Operational once transit center is constructed; to be designed and funded by Management District.
Medium	Service	Express Bus	SH 6: Addicks P\&R to Sugar Land Town Center	Facilitates "suburb to suburb" commute. Limited stops (West Oaks Mall, Shell Tech Ctr, Mission Bend P\&R, Bissonnet, etc.); requires signal synchronization, access management enhancements, and other improvements prior to implementation; would require TxDOT and Fort Bend County participation.
Medium	Service	Express Bus	West Sam Houston Tollway Express: West Bellort P\&R to West Little York P\&R	Facilitates "suburb to suburb" commute. Intermediate stops at Westtchase P\&R, Memorial City Transit Center, and Clay Road Transit Center.
Medium	Service	Local Bus	Extension of Route 65 (Bissonnet) from Synott to SH 6	Frequent route; coordinate with Fort Bend County (although intersection of SH 6 \& Bissonnet is within COH limited purpose annexation area and therefore may be within METRO Service Area).
Medium	Service	Local Bus	Extension of Route 79 (West Little York) from Fairbanks - N Houston to SH 6	Provides local route coverage within study area. 60 min base headway; Serves West Little York P\&R; Routes 45 (Tidwell West) and 46 (Gessner) would be adjusted to serve West Little York Park and Ride as well.
Medium	Service	Local Bus	North Eldridge/Tanner/Brittmore: Northwest Station P\&R to Clay Road Transit Center	Provides local route coverage within study area. 60 min base headway.
Medium	Service	Local Bus	West Road: Northwest Station P\&R to Barker - Cypress	Provides local route coverage to area just north of study area. 60 min base headway.
Medium	Capital	Park and Ride	Possible TOD redevelopment of Addicks P\&R	Pending METRO/H-GAC Station Area Planning Study.
Medium	Capital	Park and Ride	Possible TOD redevelopment of Westchase P\&R	Pending METRO/H-GAC Station Area Planning Study.
Medium	Capital	Park and Ride	Possible TOD redevelopment of Kingsland P\&R	Pending METRO/H-GAC Station Area Planning Study.
Medium	Capital	Transit Center	Memorial City Transit Center	Serves riders traveling to and from Memorial City; transer point between Routes $26,46,70,160,161,162$ and proposed Memorial City - Citycentre Circulator.
Medium	Capital	Transit Center	Clay/Sam Houston Tollway Transit Center	Transfer point between Route 23,36,58 and proposed North Eldridge/Tanner/Britmore route.
Long	Service	Local Bus	FM 529: Grand Parkway to West Little York P\&R	Serves FM 529 corridor on northern edge of study area. 30 min base headway.
Long	Service	Express Bus	Nonstop service from Addicks P\&R to Grand Parkway P\&R using Katy Freeway	Provides high speed service between Grand Parkway and Energy corridor. Could be extension of Route 160.
Long	Service	Local Bus	Barker - Cypress: Cypress P\&R to Kingsland P\&R	Provides north-south connection through rapidly-developing portion of study area. 60 min base headway.
Long	Service	Local Bus	Extension of Route 79 (West Little York) from SH 6 to Fry Road	Coverage route. 60 min base headway.
Long	Service	Local Bus	Extension of Park Row route from Fry Road to Katy Mills Mall	Coverage route. 60 min base headway.
Long	Service	Local Bus	Fry Road - W Little York to Kingsland	Coverage route. 60 min base headway.
Long	Service	Local Bus	South Mason: Park Row to Westpark Park and Ride	Provides north-south connection through rapidly-developing portion of study area. 60 min base headway; Requires Fort Bend County participation.

IMPROVEMENT OPPORTUNITIES

TABLE 5.4-TRANSIT ENHANCEMENTS (CONTINUED)				
Timeframe	Category	Type	Description	Comments
Long	Service	Local Bus	Memorial/Kingsland: SH 6 to Katy Mills Mall	Provides east-west connection through rapidly-developing portion of study area. 60 min base headway; Serves Kingsland P\&R; requires extension of Memorial Drive through Barker Reservoir.
Long	Service	Local Bus	Clay Road - SH 6 to Grand Parkway	Coverage route. 60 min base headway.
Long	Capital	Direct Connector	T-Ramp from Katy Managed Lanes to Memorial City TC	Allows direct access from Katy Freeway managed lanes to Memorial City Transit Center. Requires TxDOT participation.
Long	Guideway	High Capacity	Westpark Corridor: Grand Parkway to Bellaire/Uptown TC	Could interline with University Line between Hillcroft TC and Bellaire Uptown TC depending on chosen technology; requires Fort Bend County and/or GCRD participation.
Long	Guideway	High Capacity	US 290/Hempstead Corridor: Downtown Hempstead to Northwest Transit Center	Could extend into downtown; requires TxDOT and/or GCRD participation.
Very Long	Guideway	High Capacity	Katy Corridor: Grand Parkway P\&R to Northwest Transit Center	Would replace existing managed lanes; requires TxDOT and possibly GCRD participation.
Very Long	Guideway	High Capacity	Gessner Corridor: West Little York P\&R to West Bellfort P\&R	Provides high-capacity north-south connection on eastern edge of study area.

Projects assumed to be implemented by METRO unless otherwise noted
Last updated 11/10/2014

twest
houston

IMPROVEMENT OPPORTUNITIES

Figure 5.17 Proposed Local Bus Service

Legend

Study Area
\square Counties
Management Districts
圈 Transit Centers
[Park \& Rides
—— Routes

Proposed Facilities

(P) Park and Ride Expansion

P New Park and Ride
Proposed Services Local
= = = - Local, Extension

- Local, New

Major Destinations

- Commercial
- Educational
- Industrial
- Medical
- Retail

IMPROVEMENT OPPORTUNITIES

Figure 5.19 Proposed Facilities

Legend

Study Area
 Counties
 Management Districts
 圊 Transit Centers
 [Park \& Rides
 (1. METRO Operations Facilities

Proposed Facilities

E) Enhanced Transfer Point
[P Park and Ride Expansion
D New Park and Ride
Proposed Transit Centers
0

```
Recular Parking spaces 253
otal parking spaccs
```

-1.20.
${ }^{30}$ ' Maint. AcCess (TyP)

fwest

Figure 5.21
Proposed Energy Corridor Circular Service

IMPROVEMENT OPPORTUNITIES

5.3 POLICIES

The policy recommendations below are intend to guide future development for transportation infrastructure and services in the West Houston Study Area. These policy recommendations are intended to remove procedural barriers to transportation and land development options that currently hinder the types of improvements and development needed to ensure mobility and preserve the quality of life that residents and commuters in West Houston expect and deserve.

Some recommendations are summaries of statements in previous sections, while others provide general guidance for future development in the Study Area and the Region. All recommendations are grouped by government entity or subject matter.

City of Houston

Major Thoroughfare and Freeway Plan

Add all roadways shown in the MTFP Map to the MTFP Hierarchy Table (Section 5.1)

- Add the list of nominated collector streets to the MTFP (Section 5.1)
- Add needed roadway connections across Addicks and Barker Reservoirs (Section 5.1)

Require a minimum of 120 ' right-of-way for 6-lane roadway configurations

Infrastructure Design Manual
City of Houston should amend Chapter 42 of the Charter of Ordinances to allow for corridors that have high-frequency transit service (as described in METRO Reimagining) to be classified as Transit Corridor Streets; currently corridors must have fixed guideway transit to be classified as Transit Corridor Streets

- Continue emphasis on Context Sensitive Design (Section 4.4) on all current and future roadway projects

Inclusion of safe and equitable pedestrian facilities on all roadway projects within the City of Houston where appropriate and feasible

County Governments

- Consider inclusion of Bicycle and/ or Pedestrian facilities along streets with transit service, were appropriate (Section 5.1)
Ensure build out of the MTFP grid in unincorporated areas

Special Districts

- Continue/improve partnerships between City, County, management districts and developers on large-scale projects with significant impact on the Study Area
- Develop or refine circulator shuttle services within the management districts (Section 5.2), including partnering with METRO and/or Fort Bend County Transit to provide services

Provide incentives to employers to provide transit and/or alternative mode
benefits for their employees, including partnerships for use of park-and-ride facilities and expanding the use of vanpools, ridesharing, car sharing guaranteed ride programs, flexible work schedules, and tele-working opportunities throughout the Study Area

Transit Providers

- METRO should consider adding fixed route or flex zone service in the West Houston Study Area within Harris County between SH 6 and SH 99
- METRO should consider amending the guideline in Reimagining that stipulates that flex zones will not be considered in areas that previously did not have fixed route transit services

Increase coordination between METRO and Fort Bend County transit programs to serve local and commuter transit demand in the West Houston Study Area
METRO should assist management districts in planning for future transit connections between the Major Activity Centers within the Study Area

METRO should build the transit centers and park-and-ride facilities identified in his study

METRO should partner with the Energy Corridor Management District and private developer(s) to construct a structured parking facility at the Addicks Park and Ride lot that can accommodate future TOD

METRO should partner with area management districts and employers
to offer last mile service that enhances reverse-commute options

- METRO should indentify a location for a future bus barn in the Study Area to reduce "deadhead" travel times for routes in the Study Area
- Fort Bend County Transit should study current and future commuter service demand to the major activity centers in the Study Area

General Polices

Adopt concepts detailed in the Urban Houston Framework Study

- Implement recommendations from previous studies, where they are still applicable
- Adopt recommendations in the 2040 Regional Bikeway Plan, where applicable and appropriate
- Apply Access Management principles on all new and reconstruction projects where appropriate
Develop utility and drainage corridors for pedestrian and bicycle facilities when feasible
- Implement a regional incident management program
- Increase maintenance resources, especially safety-related maintenance
- Consider mid-mile grade separations across freeways (no connection to freeway/frontage roads)
- Stagger construction along corridors to ease traffic congestion due to construction
- Expand intelligent transportation
systems (ITS) including improved accuracy and timeliness of traveler information; add or expand ITS on high-volume arterials and toll facilities, upgrade dynamic message signs to be able to provide wider array of messages and graphics

Synchronize and optimize signal timing where necessary, especially on corridors where traffic signals are maintained by multiple jurisdictions
Develop improvement projects at thoroughfare intersections forecast to have the highest congestion, up to and including grade separations

- Provide separate bus lanes on those thoroughfares when and where ridership would justify Express/BRT Services

Regional Policy

Build out all projects currently listed in the City of Houston's MTFP and the HGAC RTP (Section 4.2)

- Implement proposed changes from METRO Reimagining program
- Provide permanent funding for a regional incident management program
- Use best practices for bicycle and pedestrian facility connectivity and safety
- Provide permanent funding for commuter rail

Regional Procedures

Review and revise incident management procedures for lane closures

- When analyzing mobility effectiveness utilize person and freight throughput rather than vehicles throughput

houston

IMPLEMENTATION TOOLBOX

6.1 FUNDING

As outlined in Section 2.10, there are many development tools and strategies available to local jurisdictions and special districts in West Houston to implement recommendations in this study. These items will be discussed with an emphasis on encouraging greater coordination of effort among local jurisdictions, private land developers, and other area stakeholders. In addition to the federal and state funding available through the H-GAC RTP/TIP process, local jurisdictions and stakeholders can utilize existing funding mechanisms or collaborate to create new ones were appropriate. Existing funding mechanisms include Energy Corridor Management District and Westchase Management District 380 agreements, the Memorial City Redevelopment Authority (TIRZ 17), the City of Houston's Rebuild Houston Program, funds from the collection of tolls by the Harris County and Fort Bend County Toll Road Authorities, and various TxDOT discretionary funds. In addition, PublicPrivate Partnerships can be created around the right opportunities to funding facilities and/or services.

Currently, two of the three Funding Partner Management Districts have 380 agreements. These agreements provide additional funding for capital improvements with the designated funding area. Both are examples of creative, collaborative funding arrangements being utilized to implement improvements in West Houston. The Energy Corridor Management District initiated a 380 agreement with the City of Houston in December 2012 to fund the construction of $\$ 20$ million in capital improvements along Park Row. These improvements include extending Park Row from the Addicks Park and Ride to its existing terminus west of Eldridge Parkway. The project includes the installation of water and sewer infrastructure as well as street lights and all applicable traffic controls. In October 2013, the Westchase Management District entered into a 380 agreement with the City of Houston to funding approximately \$573.5 Million in mobility, drainage and community improvements over 30 years The improvements include civic buildings, parking structures, a transit center, new street construction, street modification, parks, and trails.

Expected population growth in West Houston will place increasing demands upon the area's transportation infrastructure and services. In order to meet this demand both public and private entities in the area will need to develop and significantly expand alternative modes of travel and work to increase housing density and choices within the Study Area. Improving east-west connectivity will be critical.

However, the reservoirs pose a challenge to this objective. The impediment caused by the reservoirs makes the expansion of alternative modes of travel, particularly highcapacity transit even more important. If highcapacity transportation is properly expanded and utilized it could negate the need to build additional roadways through the reservoirs.

APPENDIX A PUBLIC COMMENTS

Comments received from the public are listed below. The comments are grouped by method of receipt.

DIRECT EMAILS

Received February 10, 2015
I appreciate your taking the time to review this portion of the mobility plan. My 1st goal is for the Greater West Houston Mobility Plan to 2040 to substantially incorporate segregated or physically separated pedestrain and cycle lanes. I am starting with advocating for the 2 roads that we discussed: Addicks Satsuma and West Little York. These roads intersect at an combined elementary and middle school complex. Currently, I see two major issues that will need to be considered when updating Addicks Satsuma: 1) there is a narrow bridge that spans the bayou that is only wide enough for 2 vechicles and it sits right after a major curve in the road. This is dangerous for both automobile drivers, pedestrians, and cyclists. 2) Along major portions of Addicks Satusuma, specifically north of the bridge that spans the bayou and all the way to FM 529, there are very large ditches that are located on both sides of the road.

Thank you again for your help!! Oh, I am also curious if Harris county has received any federal funding from the Safe Routes to School (SRTS) federal program? Would you know if this funding has been incorporated into the mobility plan or any other associated projects?

Received February 5, 2015
I was very alarmed to receive word of the proposed Highland Knolls extension. I am very concerned that efforts were not made to make sure the public, who use this well loved area and appreciate it, knew of this proposal and that efforts were not made to see that they were. Concerning that it seems those seeking for this extension were discreet about it so as not to be opposed when so many others, who knew nothing of this proposal, will be affected by it. It sees that every person in the community affected by this roadway should be informed about such a proposed plan and have rights to express their concerns and reasons for not putting it in. It is unfair to bring something like this to the public discreetly and that, during the holidays when so many other things are going on to keep a very interested and perhaps negatively impacted public and community out of the picture. I hope all involved will do things more positively and upfront for the community involved in the future! I would like to share a few things that have come to mind with this proposal.

First, I live near this area and it seems unnecessary and a waste of public money to put the proposed extension in. This area is currently well developed and traffic is not terrible. I don't believe it would help the current traffic situation on $\mathrm{I}-10$ or Westheimer Parkway. All other routes this road leads to are already congested. It would really benefit no one in the end and negatively impact the communities/ neighborhoods from George Bush Park to the Grand Parkway. Would it not be better to have a nature reprieve for the public's use instead reserved and left alone? As the city grows and expands, I believe all such areas are needed, necessary and beneficial for the well being of it's people. Can we not utilize funds better, improving those highways that are already in place? Is the stream of traffic on Westheimer Parkway so bad that we need to construct another main highway just a few minutes north of Westheimer? Do we want to put more traffic through already developed quiet neighborhoods (especially the Highland Knolls road between Mason and Westgreen)? This area has been developed. I don't believe adding another road is necessary to help traffic through the area.

Second, would it not be better for traffic to instead encourage and better develop routes for other commuting options such as biking? We live in a climate that can be biked nearly all year. Except when the park is flooded from rainfall, it's a great and safer way for commute. Third, I believe it would negatively impact all in the community on the west side of the park in many ways. Businesses and those living on the west side of the park do not need the Highland Knolls extension. I fear it would allow for increased crime in an area that has a natural city barrier. The trail through George Bush Park is a step away from the city into a natural reprieve. A very nice bit of nature right in the surrounding neighborhood's and community's back yard. A road through this park would destroy much of what makes this trail so special. Thank you for taking time to address my concerns. Please put a stop to the proposed Highland Knolls extension!

First, let me say that I hope you are not serious about "stealing" a bike path from underneath the feet of the Houston-Katy cycling community (per attached). That would be a major step backwards for a city that promotes active lifestyles and is a major source of fund raising for the MS 150 ride. Are there no other options? I have one, how about encouraging drivers to venture out from behind the wheel of their vehicle and commute to work on a bike? I realize very few would even consider that as an option; the point is that the interests of those cyclists that use that trail for commuting to work or for exercise in general need to be given strong consideration before converting the trail into one for motorized vehicles. I can assure you that there is strong local cycling community that will insist its voice be heard those eager to "convert paradise to a parking lot" get started.

I recently have learned about the proposed roads through George Bush Park. https://mywesthouston.files.wordpress.com/2014/12/wh-public-meeting-4-presentation1.pdf. I do not like any of it. George Bush Park is a real gem for the Houston/Katy area. It's why we bought our current house. My family walks, rides bikes, or runs in the park every day. So many of my friends and neighbors also regularly use the path. The trees, wildlife, and serenity of the park make it my favorite place in Houston/Katy. Our house is a block away from the path. We enjoy seeing the birds in our yard that come from the park. If roads were built through George Bush Park everyone would lose all of this. Also, the construction would be incredibly noisy and the increased traffic would be a nuisance. It would make living where we are undesirable.

First, I hope all of you have been enjoying good rides lately. I still can't say I miss the cold north one little bit and I love having the option of riding almost every day. HOWEVER: It looks like our commute route and weekend getaway area may be at risk. Attached is a flier that was put up in Bush Park with information that the West Houston Mobility Plan would wipe out the Bush Park bike paths to build more roads (so people can find new places to sit in their cars waiting to get past Hwy 6). There are so many things wrong-headed with this idea that it is hard to know where to start, but since there have been meetings and the plan seems real, I would propose that we learn who else may be organized to oppose the plan and support them. Let me know if you are interested in somehow helping to oppose the plan and we'll figure out next steps.

For more information about the plan, the link is http://mywesthouston. com/meeting-materials/ and the email address for the guy that put up the signs: David_lippeH@hotmail.com.

I live in Katy and frequently (two to three times a week) use the bike paths that start at Highland Knolls and run through George Bush Park eventually surfacing at I-10 near the Constables Station. The attached file contains a picture of a sign that has been posted along the trails. While I agree that West Houston needs more east-west routes to relieve congestion, how will the extension of Highland Knolls to connect with Briar Forest impact the bike trails? The email distribution list you see below is a group of cyclists and friends all of whom also use the trails including some who commute by bike to their jobs in the energy corridor.
..I know traffic is a big problem in Katy and I understand the need for progress related to Highland Knolls expansion. I am hoping that the walking/bike path will be rerouted/replaced in conjunction with the Highland Knolls expansion. The trails through George Bush park are one of the big attractions to people living in Katy. It helps keep home values up and attract new residents as older ones downsize. I bike 16.5 miles each way to work 2-3 times a week using these trails to go from Peek and Fry to Eldridge Parkway. I'm healthier and happier for it. And there is one less car on the roads when l'm on my bike!!

Please rebuild the main walking/biking treks through George Bush park. Please!

Received February 4, 2015
I agree with John Ciccarelli's comments. As a folding bike owner, I know we have not tried this sub-mode much at all in Houston, but it is extremely useful for use with transit, and it makes the demand on the transit vehicle much less.

The only thing I have to add is... I know where to get a property for the Copperfield Park and Ride. It is the abandoned HEB property at the SE corner of Barker-Cypress and FM529. It has been vacant for years. It has a large parking lot. It must be going for a song by now. No one wants it. Buses could originate there, and travel down FM529 to Highway 6, or they could make a run up-and-down Barker-Cypress and E-W on Park Row to the Addicks Transit Center.

Received January 29, 2015
Here's another public comment that I agree totally. http://www. littergetters.com/mobilityplan.htm. George Bush trail is the best 12 miles out of my 17 miles regular bike commute route. Westheimer Parkway can shorten my commute to 10 miles, but the traffic there moves at freeway speed.

PUBLIC COMMENTS INBOX EMAILS

Received January 17, 2015
I am a resident of Parklake Village. We purchased our home in 200 under the premise that the George Bush park would remain as a sanctuary. I strongly oppose the construction of the continuation of Highland Knolls to Highway 6. Please let me know if there will be a hearing or meeting regarding this issue.

Received January 16, 2015
I have been working in energy corridor since 3 years now commuting from Sugar Land every day. And over 3 years, the traffic has gone from good to worse now. I see that there are some programs started by energy corridor to mitigate and reduce traffic congestions. But I see none of them helping in any way, and its making traffic every day worse. I currently have a van pool with metro, and we are finding difficulty maintaining the number of riders in the van. All because of fixed times associated with commuting with van pool. Energy corridor is like another downtown, and metro has bus services from all over the Houston to downtown. However, there is not a single express bus from anywhere in the city to energy corridor. I don't know why this option has not been thought of. I would like to know if this option was considered and if yes, why is it not implemented. I think this would greatly reduce the traffic even if there is a bus every 30 minutes or hour to begin with from various parts of the town. I reviewed the last meeting materials. And see that there is no mention or plan to provide Metro Bus services to energy corridor which is another Houston Downtown now, with many oil companies in the area. Why can't there be bus services from various park and rides to energy corridor?

Received December 22, 2014
Please incorporate Peter Wang's comments (below) regarding the West Houston Mobility Study. What happened to the bicycle study? Peter has more knowledge of the potential for alternative modes possible in this study area than any of the consultants. Please respect his comments.

1. Show express bus service on SH 6 north of IH 10 to the Addicks
P\&R in dedicated lane or queue jumpers art intersections (not local bus service)
2. Refer to high speed rail on the Hempstead railroad alignment
3. Rather than roads why not consider elevated electric powered high capacity transit in the reservoirs
4. Show ped/bike sidewalks and pathways connecting to transit
5. Show the level of stress diagrams referring to bicycling on existing streets
6. Show cycle tracks on Barker Cypress and on SH 6
7. Refer to H-GAC (Alliance) SH 6 Access Management study for per bike along SH 6 .

Transit - It was great to finally see a transit poster, but I noticed that the service on Highway 6 north of I-10 was tagged as "local service" not "express service". I beg to differ; I think we need express service as badly as they do south of I-10. The big problem for transit on Highway 6 is that you really need it to be in a dedicated, segregated guideway You want the BRT or train to blow by motionless grid-locked cars at 40-50 MPH. Sheer envy and covetousness will get people out of their cars. If the BRT is suffering with the rest of the vehicles on grid-locked Highway 6, and going ever slower because it is big, slow, and making frequent stops, then it becomes the Transportation of Last Resort for the Poor, which is what METRO local bus service is already. Suburban neighborhoods will reject that, too. In the final report, please discuss, in general terms, the possible impacts of Houston Dallas HSR along 290. You have to realize, having an HSR station on 290 would be orders of magnitude more impactful than having a simple METRO bus stop. It would be like having an airport along 290. It would be a major socio-economic engine, a total game-changer for at least half of the sub-region. You have to make an effort to address is as best you can, even if only by borrowing materials from the Texas Central website Streets across the Army Corp reservoir? We know the damage that runoff pollution, trash, and internal combustion fumes would cause to the natural environment? If you want traffic to go over the Reservoir, why not use electrified transit vehicles on an elevated, dedicated guideway across reservoirs to have a non polluting solution? Run the vehicles across the Reservoir to the Addicks Transit Center, for example.

Bike/Ped - There was no bike-ped map or any kind of display. This was disappointing. What happened to John Ciccarelli, Bicycle Solutions? The "Thoroughfare Changes" poster didn't show hardly any roads recommended for a shared-use path. That's inconsistent with the transit poster, because every street with transit needs to have a sidewalk, right? People walk or bike to transit, no one drives $1 / 4$ mile or $1 / 2$ mile, parks, and then takes transit. Why would you stop your car journey at that point? If you don't have sidewalks and paths you will have trouble initiating transit, because people will be unable or reluctant to get to it. A bike transportation plan cannot be afraid of bikes in or near the street and road. Yes, I agree, separation by more than a mere paint stripe is good. But consigning most of the effort in bike routes to bayous, gas pipeline, and electric ROWs is consigning them to being far less relevant as transportation. There are no originations, and no true destinations for bike journeys on bayous, electric, or gas pipeline ROWs. They all have to start and end with some kind of a journey on a street, even if they use the non-street as part of the journey. So please don't avoid bikes-onstreets. Those type of facilities have to be built. This is a transportation plan, not a parks and recreation plan. We have to get out of the Harris County mindset (this was actually told me by a Harris County official) that "roads are for cars, and bikes should stay off the roads." No! That's such an outdated, "last millennium" sentiment! Barker Cypress road has so many apartments and businesses on it now, it desperately needs a shared use path, and Highway 6 too, just like the Highway 6 North Access Management Study recommended. Speaking of which, I didn't see evidence in the meeting that you merged in the Highway 6 North Access Management Study recommendations for bike/ped, because there was no bike/ped display. Please address this deficiency.

Received January 12, 2015
I submitted the below comment at www.mywesthouston.com on 01/02/2015 and have not received any kind of response: Regarding the transit recommendations map on page 29 of the Dec. 18, 2014 presentation, is there a map legend to help me better understand the transit recommendations?

Received January 9, 2015
I have been riding bicycles in the George Bush/Eldridge Park for almost as long as it's been open. Every other weekend I ride about an hour primarily to maintain health but also to enjoy to enjoy nature. One of the best features of this park is that there are still trails which are remote enough that there are no man made sounds, no diesel trucks, no cars honking, no sound of cars going down the road, no ambulances or police, only the quiet sound of nature and wildlife. I have heard that there are plans being considered to extend Briar Forest through the middle of the park. I strongly object to this proposal. Doing this will destroy the quiet solitude that exists there now. There are essentially NO places in Houston like the Bush/Eldridge Park. That is why there are so many people going there, they go to get away from the city, get away from the noise of the city and chill out. PLEASE do not put a road through here.

Absolutely no more construction should occur in Barker Reservoir. It is built for detention and not roadways. The region you propose to build roadway is a swamp, and floods extensively after relatively small rains. Before any serious consideration of construction, the land should be surveyed by an engineer. This study clearly had no professional engineer survey the lands. A professional engineer would realize the dangers with constructing a roadway here and not see it as a site to build any. This road not only would interfere with pedestrians on bikes and running, but also kill the large amount of wildlife inside the reservoir. There are many pigs, deer, and alligators in the reservoir and if this road was built it would be a VERY short time before someone ran into them and got injured. There are also many snakes, frogs, lizards, bunnies and other wildlife that would get run over by cars frequently. Overall any roads built inside Barker Reservoir is a terrible idea.

Received January 8, 2015
I speak for a large group of cyclists when I say that we do not want to have a road cut through the middle of George Bush Park. My apologies for the questions, I have not been aware of previous meetings. When will this go to a vote? What is the status?

Received January 5, 2015
When I read your about your "mobility plan" yesterday it started 2015 on a bad note. It was hard to pick my jaw up from the disbelief at how stupid some of your recommendations are. There is plenty wrong with this plan but I am going to focus my comments on the worst part of it allthe proposals you have for land within Barker and Addicks Reservoirs. Did anyone who designed this "mobility plan" even go out and explore the areas within Barker and Addicks Reservoirs that you plan on destroying? It appears to me from reading this plan that you never physically entered the area and just looked at satellite photos and drew a line wherever you felt like a road or trail should be. If this is the case your entire study is the equivalent of a child drawing on a napkin with a crayon and whoever put this together should be fired and ashamed to even be alive. I spend the majority of my free time within Barker Reservoir and will focus my comments on that section of your plan but everything I have to say applies to what you are proposing within Addicks Reservoir as well. I will begin by addressing the roads first and the "shared use path/trails" afterwards

Road impact on wildlife - My primary problems with your "plan" are the proposed street extensions of Patterson, Baker, and Highland Knolls/ Briar Forest roads through Barker and Addicks Reservoirs. Barker and Addicks Reservoirs are the ONLY areas in West Houston/Katy that have been left in a somewhat undeveloped state (excluding the shooting ranges, golf course, baseball fields, etc) and they absolutely should remain undeveloped. As West Houston and Katy have grown into ridiculous sprawl these two reservoirs are the only refuge for wildlife that have been forced out of their homes for an endless procession of retail centers, subdivisions, and apartment complexes. When you look at a satellite photo of West Houston these reservoirs are the first thing you notice due to the development in every direction around them. The area of Buffalo Bayou North of Westheimer Parkway heading towards Mason Creek is perfectly described by Louis Aulbach as "the wildest, most remote and inaccessible sections of its course. Protected from development and allowed to remain in a mostly natural state, the land in the interior of Barker Reservoir is a wild an untamed place within a stone's throw of urban civilization. $1^{\prime \prime}$

Both Mason Creek and Buffalo Bayou are tree lined and beautiful throughout this area other than the litter that flows in constantly from residents of the very developments you are trying to appease by building these roads. Neither channel looks anything like the portions outside of the reservoir where Cinco Ranch and other developments have widened them to ridiculous proportions and removed all foliage along the banks. And you want to build a road directly through this area to destroy it! The wildlife diversity in this area of Barker Reservoir is incredible and I have spent hundreds of hours there exploring and photographing wildlife. There are already numerous species of animal that have been extirpated from the West Houston/Katy area and this loss of species will increase if you are allowed to build roads to bisect these reservoirs. For instance the archaeological study by Joe Ben Wheat which started in 1947 within Addicks Reservoir found bone evidence from bison, badgers, and antelope. When is the last time you saw any of those in West Houston2?

These sections of Buffalo Bayou and Mason Creek overflow their banks anytime it rains more than an inch or two and the surrounding woods in any direction are left multiple feet under water for weeks at a time. Consequently the amount of reptiles and amphibians here is greater than areas outside of the reservoir. Satellite photos reveal a couple oxbow lakes and ponds but in actuality the entire area is primarily wetland. From a human standpoint these street extensions are a horrible idea as well. For cyclists, joggers, walkers, etc the trails within Barker and Addicks Reservoir are the ONLY places in West Houston/ Katy where someone can go multiple miles without having to worry about automobiles running them over or choking them with exhaus fumes. The trail that begins at the Highland Knolls and Fry Road intersection into Barker Reservoir is a haven for cyclists and you are proposing building a road there to ruin it. Whether the road is separate from the trail or you plan to build a "shared use" road the end result is the same-it will destroy this area for cyclists. Why don't you put out a map of your proposed roadway near the benches where cyclists gather near Highland Knolls and Fry Road and ask their opinion of your plans? Are you scared of the backlash? From an archaeological perspective these roads are also a horrible idea. Previous archaeological studies within Addicks and Barker Reservoir such as those by Blaine Ensor, Prewitt \& Associates, or Joe Ben Wheat all found numerous historic sites.

You are proposing building roads in areas that could contain undiscovered historic sites. Once you cover the ground with concrete for a road there is no turning back-those sites will be lost forever. The former LH7 Ranch has already been destroyed for an apartment complex adjoining Barker Reservoir and we do not need more of our past lost. How do you plan to mitigate for wildlife in this area when you build a road that bisects their home? How do you plan on keeping alligators, snakes, frogs, skinks, deer, feral hogs, and other animals from getting ran over constantly? What do you plan on doing when the first human is killed that runs into a feral hog on these roads with their vehicle? Nowhere in the Houston area have roads been built with any wildlife considerations like wildlife overpasses, underpasses, culverts, or elevated roadways and I suspect you have no intentions of doing so either. How do you plan on keeping debris, chemicals, and other pollutants from the roadway from contaminating these areas? If these horrible roads are allowed to be built I sincerely hope that whoever designs them has read the book Road Ecology by Forman et al and that wildlife mitigation is a primary concern. Putting a road through these areas will also open up access to humans who otherwise would not visit them and further stress wildlife that currently lives in relative peace with infrequent human visitation. Regardless of how you build the road there will always be a place where someone can pull over and park their car to get out and explore. People on dirtbikes and four wheelers will find a way into these areas from your new roads and be off-roading where they do not belong in no time at all. What is your plan to mitigate the flooding impact of your proposed roads in these reservoirs? You are proposing building roads through spots that are constantly flooding and concrete will only add to the problem. During the last large rainfall events in May 2014 and September 2014 are you aware that Buffalo Bayou overflowed its banks less than $3 / 4$ mile from the Cinco Ranch Saddlebrook Crossing neighborhood and your road could be the cause of a future flooding disaster.

The proposed shared use path/trails - The Army Corp of Engineers manages these reservoirs for flood control along with "recreation and nature observation opportunities..the visitor is welcome to come and walk through the fields or along the streams and enjoy the many opportunities that mother nature has to offer.(3)" There is simply no reason to build a path or trail on every single piece of land around-it is just as bad as building a roadway. Organizations such as your own are obsessed with building hike and bike trails and so called greenways along every single bayou in existence. These areas are already open to the explorative public at all hours.

I am going to focus on the proposed trails along Buffalo Bayou and Mason Creek within Barker Reservoir but my comments apply to all the other areas within the reservoirs you want to build a trail on. You want to build a trail along Buffalo Bayou connecting the Barker Clodine trail and the Texas Western Railway trail for what reason? The primary allure of this section of Buffalo Bayou is the lack of visitors. For those such as myself that spend time there it gives a chance to explore nature for hours and escape the surrounding city. On the paved trails within the reservoirs it is rare to go even 30 seconds most days without seeing another person. You are basically wanting to build a shortcut to connect two existing recreation trails and promoting laziness by offering people an easy way out. If people want to explore this area of Buffalo Bayou there is already a game trail parallel to the water on both sides that is easily followed. If people cannot follow an obvious trail through the woods they should not be there because they are likely unaware of their surroundings and could be injured, yet these are the people you are wanting to create access for. Your proposed trail would take away both the seclusion and chances for exploration in this area.

Wildlife will be negatively affected by these trails both by loss of habitat and by being killed by pedestrians using the trails. These areas are heavily populated with snakes which inevitably are killed by many morons whenever they are encountered. Are you aware of how many ponds, creeks, and other wetlands exist in this area that branch off of Buffalo Bayou or Mason Creek? Do you intend to build bridges over all of these spots (every 100 or so feet) to keep people high and dry who use this trail?

Again this goes back to my initial question of whether you even visited these areas since these wetlands are not visible on satellite photos. If you just sat in an office and never went out there you need to get off your rear end and go for a hike to see for yourself how stupid your plans are. Are you aware that along Buffalo Bayou there are wooden nesting boxes every couple hundred feet throughout this area along the game trail? Do you know that multiple nesting boxes have become full of active bee hives that many people will not like to pass by. These trails would do nothing to increase mobility or allow more than a fraction of a percent of people to commute to work by bicycle. They are unnecessary and should not be made.

In conclusion - Have you even contacted the U.S. Army Corp of Engineers to inquire about whether it is possible to build roads and trails on their land? How exactly do you intend to seize federal land to build a road when you have no authority to do so? The overall problem spurring your study is the sprawl that is continuing unrelentingly within the West Houston and Katy area. These "master planned" communities are built with seemingly no consideration for mobility or pedestrian use. I could type a few thousand words on it but instead would just suggest you read the book Suburban Nation by Andres Duany, Elizabeth Plater-Zyberk, and Jeff Speck. Your "mobility plan" is only doing exactly what developers want by building more roads to allow them to build more useless sprawl. Transit options make sense constructing more roads does not. Unsurprisingly there is no stakeholder group listed on your website that has any concerns about wildlife. Nothing was considered for your plan except human interests and how to attract more development and growth, which will require yet more roads in a never ending cycle. The stakeholders listed such as The Energy Corridor were created to represent some of the most environmentally appalling companies on the planet that have offices in West Houston. From looking at the plans it appears that you put absolutely no thought into anything other than trying to worsen the sprawl situation. Everyone in the Houston area will be worse off if your horrible recommendations within Barker and Addicks Reservoir are turned into reality. We are all blessed to have 2 reservoirs that contain around 26,000 acres of somewhat natural areas in the West Houston area and they should remain undeveloped perpetually-no trails, no roads, no retail centers, donut shops, or whatever you come up with next to screw them up.

Just because a piece of land is undeveloped does not mean that it is useless. If you are allowed to build a road in either reservoir there is no question you will want to keep building more things alongside it and you need to be stopped before ever starting. I have also put my comment online illustrated with photographs backing up many points at www. littergetters.com/mobilityplan.htm

Received January 5, 2015
I strongly oppose the proposals to build new roads through George Bush Park. In my view the best way to address Houston's traffic issues is through public transport, not by building more roads and especially not through existing parks. I view this proposed intrusion into a great public space to be a significant backwards step for the quality of life for the residents of Houston

I commute to work nearly daily, year-round, from Katy through Barker Reservoir to the Energy Corridor on Eldridge. The primary reason I choose to live where I do is to have cycling access to work where I don't have to worry about getting hit by cars while riding. Further, I love to take advantage of the fantastic green space offered by the Barker Reservoir with my family. Barker Reservoir in its current state is an amazing asset to have in West Houston. It certainly has a "Central Park" feel as Houston has exploded around it. I see countless people running, walking, fishing, cycling and more at all times of the year in Barker Reservoir - it is an oasis in the chaos of streets, traffic and urban sprawl I recognize that the study being performed is trying to balance various modes of commuting but in respect for all the people who currently use the trail system in the park as well as the generations yet to come, I feel obligated to voice a preference to NOT construct additional roads through George Bush Park / Barker Reservoir as tempting as it may be from a traffic perspective. The park is a unique and wonderful resource and offers to be that way for decades to come. Traffic patterns and centers of industry are fickle and change frequently, often radically. Once roads, traffic lights, etc. are put into the park, they will stay there forever, regardless of how the city expands or where job centers move. Further, there is a sustained upkeep cost forever imposed on taxpayers to maintain these additional roads. I humbly plea that if any changes are made to the park / reservoir, that they instead be additional access points for cyclists, runners, etc.

Promote a healthier Houston by way of commuting via bike, rather than compound the problem by just encouraging more driving. Large employers like Conoco Phillips, BP and more reward employees by finding alternative modes of commuting - but people won't cycle to work if the roads are as hazardous as they are now in Houston. A trick to reducing car traffic is to provide alternative options and other cities around the world have already taken this on in spades.

Received January 1, 2015
I am a resident in Spring Branch, Council Member Pennington's area, and have added my voice along with my neighbors about our concern that TIRZ 17 will disregard our desire NOT to widen Gessner or Memorial.

Received May 26, 2014
I was wondering what the status of the study is. According to the presentation on the website there should have been a public meeting in March 2014 for Proposed improvements to key corridors.

Received January 1, 2014

Working at BP at the Westlake Campus I just don't understand every time I drive down Memorial or more commonly known as the Moonscape Drive I am amazed that this street has not been rebuilt. Providing a nonpotholed and even street surface will surly improve the flow efficiency along that corridor. I'm not sure how this observation will get included for consideration but Memorial truly does need to be rebuilt between Dairy Ashford and Hwy 6.

Received November 27, 2013
What it shows is that even our here in the suburbs we're really in the "hot" zone for proximity to jobs; of course, we who've lived here for twenty years and have worked in the Energy Corridor and Westchase have always know that, which is why we came... but it also shows that a minimum-investment (Bus Rapid Transit) system going north from I-10 up State Highway 6 could be very useful in connecting Greater West Houston to the employment centers, and it would greatly debottleneck State Highway 6 and I-10 and other roads. Bus Rapid Transit would be a faster service more like Park \& Ride buses than like slow local services.

Received October, 7, 2013
In my immediate area on the West side, the section of Kirkwood that lies between Westheimer and Briar Forest is in absolutely deplorable condition, and getting worse as each month goes by. Please give this your attention when deciding to allocate funds for street repairs.

Received October 4, 2013

It is definitely challenging for the school buses that serve Nottingham Elementary in SBISD to pick up and drop off students on a daily basis. The street and the driveway are too narrow and is a hassle for parents who pick up their kids in a car also. The whole school should be reconstructed like Wolfe Elementary in my opinion.

I would like to request more biking trails that don't cross major streets. It would be nice to have a safe trail down Westview also. It is safer to cross and can vent some bikes down it and off big roads. I would like to see the Addicks Reservoir developed with some trails inside of it if possible too. With heavy tax rate and nickel and dime of the residents along Woodway, Sage, and other nearby streets. I am told the street funding and mobility funding is directed more towards the lower tax rate areas and lower income areas since they are supposedly more exposed to the failing infrastructures.........also, The residents in and around Tanglewood can afford to repair their cars, also the residents of this area don't need sidewalks - we have new expensive cars to drive instead, also we don't need any flood mitigation near this area - since we can afford the flood insurance (much higher rates after IKE), and the out of pocket repairs associated with water damage. ON and on and on. I think --- it would be prudent to at LEAST ... replace and install where projects were never completed - new sidewalks that are wide enough to be a two /away... along the west side of Sage Road all the way from Buffalo Bayou to San Filipe. This area has fairly heavy foot traffic -but we have to mostly walk or bike in the roadway. Then again--- the roadway is in such disrepair ---- the traffic cannot speed along at an alarming rate. I hope anyone reads this --- but I don't really expect to fall on any attentive ears.

Received October 3, 2013

All bus stops should have a covered seating area...benches are nice, but not important. I understand you don't want homeless turning into a shelter, but riders should be protected from the sun. All bus stops should have a paved walkway up to the corner. Take a ride over to Kirkwood and Richmond, south east corner. People in pain come from the hospital across the street, have to walk thru grass to stand in the sun until a bus comes. That is not only cruel, it's stupid. More biking lanes so we don't all get obese! Thanks!

COMMENT CARDS RECEIVED AT WOLFE ELEMENTARY SCHOOL PUBLIC MEETING DEC. 18, 2014

If SH 6 will not be limited access, then a "supper street" should be pursued with fewer stoplights and frontage type roads for local access Bus service is greatly needed along SH 6 and FM 529. Stoplight timing for better traffic flow needs to be implemented on all major collectors with adjustments for traffic flow based on time of day. A complete bicycle network that forms grids without gaps is needed--nobody rides a winding trail along a bayou to get to work. Roads connecting through the reservoirs is a good idea, as long as they are above the flood elevation for 50 -year storms. SH 6 needs direct connectors to/from IH 10, and the I-lane northbound SH 6 ramp over the levee needs to be widened.

Can I get a copy of the A\&G booklets? A digital copy is fine. Can rail be run on the IH 10 right of way? That was discussed before the last widening of IH 10 .

Study was very generic, not helpful at all; not sure how you would get funding. Need high-speed /light rail over next 25 years
(1) Need Hwy 6 limited access multi-lane; run it down levee or inside Barker Reservoir. This will relieve congestion at Eldridge/Kirkwood/Dairy Ashford.
(2) Need non-stop flow lanes down Westheimer; run 2 lanes east and 2 lanes west; elevated with up/down ramps per mile; provides east/wes flow plus better north/south cross flow; addresses Westheimer/Gessner; Westheimer/Wilcrest
(3) How would rail work in IH 10 corridor? Would this relieve reverse single-occupant lanes?

Re: the project detailing that Barker-Cypress Road will be widened to Glover. It would be good to have a shoulder, a bike lane, or a sidewalk included so pedestrians/cyclists have adequate space to travel along it. Currently, they have to ride/walk in the ditch.

I'm concerned that some planned road upgrades might include removing esplanades, making it more difficult for people to turn in and out of their neighborhood and also significantly degrading the aesthetics of a neighborhood. I'm particularly concerned about Wilcrest Dr, but I believe this is probably an issue for other roads. This falls under the study goal of "preserve neighborhoods."

COMMENT CARDS RECEIVED AT HCC NORTHWEST PUBLIC MEETING - JULY 22, 2014

Please help reduce traffic. Please think outside of the box, perhaps 2 levels of roads, rail system/remove HOV lanes. Perhaps this system could travel on IH 10 to Sealy or beyond. I was here since 1981 and saw rail lines over IH 10 and Westpark. Dallas has built out rail lines more than Houston has.

When IH 10 was enlarged, we were told it was designed so a train/rai could be built down the center. Now is the time to do that! You can do away with the tollway and build rail.

Sidewalks are in very bad condition. If you are disabled, you cannot use them. If you are mobile, it still presents big problems. People won't walk f we don't fix this issue.

MYWESTHOUSTON.COM WEBSITE

Received February 6, 2015
Can someone ever give me an answer as to why no express metro bus services from various parts of the town going to energy corridor ike downtown? Energy corridor has almost same number of people working as in downtown, yet no public transportation thought of. I am just frustrated with the energy corridor management for blocking it or not planning on it.

Received February 3, 2015
Building a road through this area is a waste of money. It will not solve anything. Be more creative.

Received February 2, 2015
I am against

Received January 21, 2015

live near Highland Knolls and I am concerned regarding the proposed extension of the road through George Bush Park. Any extension would damage the value of all the part space currently at the intersection of Highland Knolls and Fry Roads. The resulting major thoroughfare would cause great harm to the community, in my opinion. In addition, Highland Knolls west of Westgreen is a residential street. Currently, street parking is allowed for these residents. This is already a major issue for traffic going west. It effectively reduces the road to one lane both ways between Westgreen and Mason. The associated traffic increase that would come from an extension would surely make this an even greater issue for residents and drivers

Received January 17, 2015
Amazing that one of the Project Goals is to "Protect environmentally sensitive areas \& green spaces" and the plan is to build roads through exactly those areas and spaces. There is nowhere for the vast wildlife that exists within the park/reservoir to go once it starts getting developed. Building more roads to feed bigger, already jammed roads is not sustainable at all. Alternative transport methods need to be incorporated They are planning to remove the only safe cycling routes from Katy into the Energy Corridor - totally against what their own stated aims are. This whole plan has been somewhat under-the-radar - nobody holds a public meeting the week before Christmas if they genuinely want to engage the public.

Received January 9, 2015
As a regular user of this trail system, I oppose the road expansion for vehicle traffic. However, I favor the widening and maintenance of a trail system that is heavily used by us the tax payers of this state. Texas is not a bicycle friendly state and it is both the motorist's and bicyclist's fault because we don't share the road properly. This area needs to be protected, not developed for our enjoyment and generations to come.

Received January 6, 2015

I couldn't even figure out what that Kingsland to Memorial road illustrated on the map was supposed to be. They colored it black instead of blue (proposed new road) making it look like whoever drew the map thinks the road already exists. Same thing with Barker Clodine through the reservoir which has been closed to automobile traffic for as long as I can remember it is black on the map as if currently in use. Couldn't agree more though the reservoirs should be off limits to any development. Steve Radack and Harris County have already tried turning them into neighborhood parks and taking away from the original purposes of holding water. Further confusion has been caused by calling huge sections of the reservoirs things like George Bush PARK or Bear Creek PARK when they were not created to be parks.

We all live, work and commute throughout West Houston and I know that I speak for the vast majority when I say that a cutting a road through the park will be a tragic move. It will remove the tranquility and appeal of the area for runners, walkers and cyclists. At a time when most metropolitan areas are providing "greener" options it is outrageous that there is even a proposal to add concrete and motorized traffic through the middle of this area.

Received January 5, 2015
We just moved to the area $11 / 2$ years and bought our house strictly for the location so my husband could commute to work on his bike. Our whole family uses this trail virtually every day summer and winter. I have seen no notices of this plan posted anywhere (other than one a concerned citizen posted just recently). Had we known, we would have attended meetings. It's disappointing at best that 1) this plan to destroy such a widely used recreational trail has even been proposed and 2) that it was done without notice and input of those who currently benefit from this area. In such a huge city which very little "nature" particularly in Katy, one would think that this little piece could remain to serve the wellbeing of this community.

Received January 4, 2015
Please do not build road where existing path enters George bush park. This is utilized by so many runners and bikers. That would be a major blow to those of us trying to stay fit!

Received January 2, 2015
I urge the public who enjoys using Addicks or Barker Reservoir for recreation to read these plans especially concerning the proposed road construction in both reservoirs. I've put my comment online that was submitted 1/2/15 for anyone to see at http://www.littergetters.com/ mobilityplan.htm.

Received December 29, 2015
Please understand that none of these plans can succeed in an area that floods after every heavy rain. First you must 1) Abolish the grandfathering clause that allows developers to channel their floodwaters into surrounding neighborhoods (ie., CityCentre, Memorial City, Town \& Country). 2) Reserve the Barker/Addicks dams for DETENTION. Do not extend roads through the dam for the convenience of residents who live west. Do not continue the practice of building community centers, sports facilities, zoos and pioneer villages inside the dam walls. Having leased the dam floor for his recreational facilities, now CC \#3 Radack does not want his facilities messed up by flood waters. 3) Build detention for the Long Point Slough and the Clodine Ditch. 5) Build detention at the headwaters of White Oak bayou. 6) Have TX Dot come back to 110 and Beltway 8 and build detention that was on their original plans and omitted in the construction phase. 7) Buffalo Bayou in its natural riparian state is one of the most appealing attractions of this city and it must be cherished and preserved. I totally agree with Engineer Richard L. Long when he came to the West Houston SN meeting and proposed detention at the headwaters of White Oak bayou. Detaining the storm water before it can enter the bayou and cause flooding makes a lot more sense than cutting all the trees and channelizing the bayou with concrete after it floods. Fix the flooding please, first. then people will come to live and work in West Houston. Finally, you need an architectural committee. That 6 story apartment building and parking garage at the corner of Dairy Ashford and Memorial Drive is hideous. It is totally repulsive. It is going to sell a lot of houses, but not in Memorial. It's going to sell houses in Katy and the Woodlands.

Received December 14, 2014
We need a rapid train. One can keep building roads and get clogged roads. From Katy to downtown, From Katy to energy corridor, Katy to the Galleria from Katy to Memorial City. They should have park and ride lots for the trains as one needs a car to get to the starting point. A train from downtown to serve the Allen Parkway offices and the greenway plaza offices would help further.

Received December 12, 2014

I am objecting to extending Memorial through Barker dam to Kingsland No further development can be tolerated within the walls of Barker/ Addicks. The primary purpose of the dams is for DETENTION. Harris County has erected permanent structures with the dams: a zoo and pioneer village, community center, shooting range, sports fields, etc. CC Steve Radack does not want his recreational facilities messed up with muddy flood waters. The dams can only hold 2-3 feet of water before the gates are open. The permanent facilities are nice for the people who live upstream of the dams, but devastating for the people who live downstream. Our yards and common areas are serving as detention. I have been to many of the meetings lately and listened to lots of jokes but nothing of substance. The best the bureaucrats can offer is to buy flood insurance. Developers envision the dams as raw land waiting to be developed. They are now drawing maps with road crisscrossing the dams with a vision of future gas stations, chain stores and strip centers Please restore the dams to their original purpose: detention.

COMMENTS FROM CROWDMAP: HTTPS:// WESTHOUSTON.CROWDMAP.COM

Feb. 3, 2014

Issue: Clay Road to north end of Wycliffe Dr Shared Use Path
Mode: Bicycle, Pedestrian, ADA
Location: Clay Road and Addicks Dam
Adding a concrete shared use path would improve the north south hike and bike access to and from the Energy Corridor.

Issue: Piping Rock \& Barker Oaks Stop Signs
Mode: Automobile, Bicycle, Pedestrian, ADA
Location: Piping Rock Lane \& Barker Oaks Drive
Place four way stop signs at this intersection to allow bike/ped traffic to safely cross Barker Oaks when travelling between Terry Hershey and Bishop Fiorenza/Eldridge Detention Basin and other points of interest.

Issue: Pedestrian signals at Westheimer \& Briargreen
Mode: Bicycle, Pedestrian
Location: Westheimer \& Briargreen
This will be a key crossing of Westheimer for pedestrians and cyclists moving between Terry Hershey to the north and Bishop Fiorenza/ Eldridge Detention Basin to the south. No pedestrian signals currently exist, but installing them should be a priority.

Jan. 31, 2014
Issue: Pedestrian Signal at Westheimer \& Briargreen
Mode: Bicycle, Pedestrian
Location: Westheimer \& Briargreen
Adding this pedestrian signal would make for safe passage of pedestrian and cyclists between Terry Hershey trail and Archbishop Fiorenza Park, Mission Bend Greenbelt and other points south and north.

Issue: Grand Parkway Park \& Ride facility needed
Mode: Transit
Location: SH 99 and I-10
Please consider acceleration of the permanent park and ride facility at 99 and $\mathrm{I}-10$. The existing parking is not even large enough to fill the buses that serve this park and ride.

Jan. 27, 2014
Issue: Southeast access point to George Bush park [Edit]

Mode: Bicycle

Location: 2270 Barker Oaks Drive, Houston, TX 77077, USA
There are multiple convenient access points to George Bush park almost everywhere around it, except for the very long southeastern stretch of its border. Hikers and bikers from Westheimer@SH-6 area have to drive north or west to gain access to this wonderful park and its trails. It would extremely convenient to have another access to the park (well, at least to the trail on the dam and the one along the ditch) around where West Oaks Village shopping center is. City of Houston already appears to have some property in that area on 2270 Barker Oaks Dr. There used to be some water facility, but now that property is empty (although, it is still fenced). It would be great to have a trail next to it for hikers and bikers to get to the dam and the trail next to the ditch. That trail is the only major south-north off-the-road thoroughfare in the area. It grants safe access to miles of trails and other amenities in the study area. Such an access point also would make commute in north-south direction by bike a lot safer and more desirable (SH-6 is just too dangerous for that at the moment).

Jan. 23, 2014
Issue: Terry Hershey East/Memorial Corridor Shared Use Path Mode: Bicycle, Pedestrian
Location: Memorial Drive, BW 8 to Blalock
This project should be included in the plan as it would build a key portion of trail connection from the east end of Terry Hershey park to downtown Houston. It would be a series of 8-10' wide sidewalks along Memorial Drive.

Issue: Cinco Buffalo Bayou Trail

Mode: Bicycle

Location: Buffalo Bayou from 99 to Fry Road
The plan should include a shared use path along Buffalo Bayou in the high density residential area of Cinco Ranch. An adequate pathway with major road underpasses would be heavily used for commuting and recreation.
ssue: Briar Forest to West Oaks Mall Shared Use Path
Mode: Bicycle, Pedestrian
Location: Briar Forest to West Oaks Mall (Westheimer \& Westheimer Pkwy)

This pathway should be included in the plan as it is a key link between Terry Hershey and the Brays Bayou park \& trail complex around Bishop Fiorenza and McClendon Parks.

Issue: Buffalo Bayou West Shared Use Path
Mode: Bicycle Location: Cinco George Bush Park South
Extending the trail along Buffalo Bayou from east of Fry Road, easterly across Long Point Slough, past the cricket field in George Bush Park to Westheimer Parkway \& South Barker Cypress should be included in the plan. Please email me for details on the alignment.

Jan. 21, 2014

Issue: Sidewalk on Piping Rock Ln, between SH 6 and Briarview Dr Mode: Pedestrian
Location: Piping Rock Ln, from SH 6 to Briarview Dr
A pedestrian crossing was added to the intersection of SH6 and Piping Rock Ln not so long ago. This a fantastic feature which allows residents who live east of SH6, to walk over to the shopping plaza on the west side. However, there is no sidewalk between SH6 and Briarview Dr along Piping Rock Ln. So, the residents are forced to walk on the road A sidewalk along that stretch of Piping Rock Ln would be great for pedestrian safety and convenience.

Jan. 6, 2014
Issue: Grand Parkway Park \& Ride facility needed
Mode: Transit
Location: SH 99 and I-10
Please consider acceleration of the permanent park and ride facility at 99 and I-10. The existing parking is not even large enough to fill the buses that serve this park and ride

Issue: Continuous Frontage Roads for Westpark Tollway
Mode: Automobile, Bicycle, Pedestrian
Location: Westpark Tollway east of Hwy 6
Develop continuous frontage roads for both directions on Westpark Tollway to provide free capacity

Dec. 7, 2013
Issue: Traffic Light at Highland Knolls \& Fry
Mode: Automobile, Bicycle
Location: Highland Knolls at Fry, Katy, TX 77450
Eastbound traffic on Highland Knolls seem to assume they have protected left turn to Fry Northbound. The lights actually turn green for both Eastbound and Westbound traffic from the bike trail, implying the left turn traffic to yield to thru traffic. Safety issue occurs since the leftturning traffic do not see the need to yield. Please either put the sign "Left Turn Yield" or add protected left turn green light

Nov. 17, 2013
Issue: Addicks-Tanner Connection Trail
Mode: Bicycle, Pedestrian
Location: Tanner Road at North Addicks Dam
represent a group promoting a 1000 ft bike/hike trail connection from the north end of Addicks Dam to Tanner Road. We have consulted 3 area HOAs, 4 area MUD, Harris County Precinct 4, Corps of Engineers and CFISD; all are supportive. This could be built by Harris County. I wish to put this project on the map (along with 2 related sidewalk trails; separately) so that planners are aware of the activity.

Issue: Tanner Road Sidewalk Trai
Mode: Bicycle, Pedestrian
Location: Tanner Road from Eldridge to Addicks Dam
I represent a group promoting better bicycle and pedestrian access along Tanner Road from North Eldridge Parkway to a proposed connection to North Addicks Dam and Cullen Park. We have consulted 3 area HOAs, 4 area MUD, Harris County Precinct 4, Corps of Engineers and CFISD; all are supportive. I wish to put this project on the map (along with the related Addicks-Tanner Connection Trail and the Eldridge Sidewalk Trails) so that planners are aware of the activity. We are currently researching funding sources for this project.

Issue: North Eldridge Sidewalk Trai
Mode: Bicycle, Pedestrian
Location: North Eldridge Parkway at Tanner Road
I represent a group promoting better bicycle and pedestrian access along North Eldridge Parkway south and north from the Tanner Road intersection, along with improvements along Tanner. We have consulted 3 area HOAs, 4 area MUD, Harris County Precinct 4, Corps of Engineers and CFISD; all are supportive. I wish to put this project on the map (along with the related Addicks-Tanner Connection Trail and the Tanner Sidewalk Trails) so that planners are aware of the activity. We are currently researching funding sources for this project.

Oct. 24, 2013

Issue: Overlay Quality of Briar Forest

Mode: Automobile, Bicycle

ocation: Briar Forest
Briar Forest asphalt overlay quality is horrible (between Dairy Ashford \& Beltway 8). A lot of uneven surface, cracks, low spots where water stands, and overlay not covering the entire lane (uneven bike lanes).

Issue: SH6 Pedestrian Signal Reques

Mode: Pedestrian
Location: SH6 between Richmond \& Briar Forest
SH6 needs pedestrian signals at the following intersections

1. Briar Forest (Barker Dam trail entrance)
2. Parkhollow Dr. (West Oaks Mall entrance)
3. Richmond Ave

Follow-on Comment
Gregg Nady (Jan 23, 2014)
A pedestrian signal at Westheimer \& Briargreen would help the connection between Terry Hershey and Brays Bayou

Oct. 23, 2013
ssue: Westheimer intersections with Dairy Ashford and SH 6
Mode: Automobile
Westheimer at SH 6, and Westheimer at Dairy Ashford
The afternoon rush hour commute along Westheimer at the intersections of both Dairy Ashford and State Highway 6 includes lengthy waits attempting to get through the intersections. Can the traffic signal timing be improved, and is an overpass planned for the SH 6 intersection?

APPENDIXA

Oct. 22, 2013

Issue: Richmond Avenue

Mode: Automobile

Location: Richmond Avenue
The condition of Richmond Ave from Hwy 6 to the 610 Loop (and probably beyond) is horrible. The roadway is very uneven and, in some places, dangerous. There are a few spots of congestion, but it isn't really too bad in the morning. However, at Eldridge, there seems to be much more traffic on Richmond than Eldridge, yet the traffic on Eldridge has a much longer green light to the point that there is no traffic going through the intersection. In the morning rush, it would probably be beneficial to have a longer light for eastbound Richmond traffic and a shorter one for Eldridge traffic.

Issue: Driving through George Bush Park
Mode: Automobile
Location: Barker Cypress \& FM 1093
Heading south on Barker Cypress (at FM 1093) and heading east on Westheimer Parkway (at FM 1093) it takes a long time to get out of the park during rush hour in the morning. On Barker Cypress, it often backs up more than half way to Westheimer Parkway through the park before 7:00 am. If there was more than one lane heading out of the park, then I think traffic times will be greatly reduced.

Oct. 06, 2013
ssue: Katy Freeway - Kirkwood/Wilcrest

Mode: Automobile

Location: 11400 Block of Katy Freeway - between Wilcrest and Kirkwood Southside of Freeway

Each morning, I attempt to go from neighborhood on the north side of Katy Freeway to Loop 610 and I-10. This requires that I use Kirkwood intersection to go east of Katy Freeway. Because of the dual right turn lanes on the south side of Katy freeway, the u-turn is extremely congested and very dangerous to use. There is literally no break in the traffic and many of the cars in the u-turn actually want to cross 3 lanes of traffic into the parking lot. I use the lights to make the u-turn. Once l'm east bound on the access road, it's backed up with the traffic exiting Katy freeway and the heavy back up at the Wilcrest light on the south side of the freeway. This will be made worse with the additional apartment housing soon to be available on the south side of Katy Freeway at Wilcrest and the upcoming townhomes on Brittmore. What can be done to ease the traffic flow?

APPENDIX B SURVEY RESULTS

SURVEY RESULTS

A survey was conducted at the second public meeting. Participants were asked the following questions regarding mobility opportunities and challenges in the Study Area.

PUBLIC MEETING SURVEY QUESTIONS

1. DO YOU LIVE AND/OR WORK IN THE STUDY AREA? (MULTIPLE CHOICE)	
Response	Percent
1 live in the study area	22.22\%
I work in the study area	29.63\%
I live and work in the study area	25.93\%
I don't live or work in the study area, but I am interested in what is happening here	22.22\%
2. WHAT IS THE BIGGEST MOBILITY CHALLENGE IN THE STUDY AREA? (MULTIPLE CHOICE)	
Response Percent	
Trafic congestion	59.26\%
Safety	3.7\%
Lack of alternatives to automobile	37.04\%
Other	0\%
Totals 100\%	
3. PLEASE SELECT THE MOST IMPORTANT OPTION FOR THE STUDY AREA: (MULTIPLE CHOICE)	
Response Percent	
Added capacity	17.86\%
Efficiency/safety enhancements	21.43\%
Demand management	32.14\%
All are equally important	28.57\%
Other	0\%
No changes needed	0\%
Totals 100\%	
4. HOW OFTEN DO YOU USE TRANSIT? (MULTIPLE CHOICE)	
Responses Percent	
Every day	7.14\%
Once a week	7.14\%
Once a month	10.71\%
Once a year	32.14\%
Never	42.86\%
Totals 100\%	
5. WHAT KEEPS YOU FROM USING TRANSIT MORE FREQUENTLY? (MULTIPLE CHOICE - MULTIPLE RESPONSE)	
Responses Percent	
My destination(s) are inaccessible by transit	28.26\%
Takes too long	32.61\%
No transit options near my home	23.91\%
Lack of safety on transit	2.17\%
Other	10.87\%
Nothing, I use transit frequently	2.17\%
Totals 100\%	

6. PREFERRED TRANSIT SERVICE (MULTIPLE CHOICE - MULTIPLE RESPONSE)
Responses Long-haul, park and ride service Percent Local service that's accessible by walking 27.45% Express bus 29.41% Demand-responselparatransit$\quad 29.41 \%$
I don't prefer transit

7. HOW OFTEN DO YOU RIDE YOUR BIKE? (MULTIPLE CHOICE)

Responses	
Daily	Percent
Once a week	14.81%
Once a month	14.81%
Once a year	11.11%
11.11%	
Never, I don't ride a bike	Totals

9. WHY DONT YOU RIDE YOUR BIKE MORE OFTEN? (MULTIPLE CHOICE - MULTIPLE RESPONSE) Pesponses Percent

	Responses	Percent
Weather - it's too hot, cold, rainy, etc.	19.15%	
Lack of bike paths where I want to go	19.15%	
Destination(s) are too far away	19.15%	
I don't feel comfortable eriding on the street with traffic	Other	19.15%
None, I feel comfortable riding my bike	4.26%	
Totals	19.15%	
	100%	

10. WHAT ARE YOUR PREFERRED BICYCLE FACILITIES? (MULTIPLE CHOICE) - 100\%

Responses	Percent	
	On-street bicycle facilities	3.85%
	Off-street bicycle facilities	19.23%
I prefer a mix of both	46.15%	
	None of the above, I don't ride a bicycle	Totals

APPENDIXB

12. WHY DO YOU WALK TO DESTINATIONS? (MULTIPLE CHOICE - MULTIPLE RESPONSE)	
Responses	Percent
Recreation	28.57\%
Exercise	32.65\%
Commute to work	6.12\%
Errands - shopping, dining, etc.	26.53\%
Other	2.04\%
None, I don't walk to destinations	4.08\%
Totals	100\%
13. WHY DONT YOU WALK TO A DESTINATION? (MULTIPLE CHOICE - MULTIPLE RESPONSE)	
Responses Percent	
Weather - it's too hot, cold, rainy, etc.	18\%
Lack of sidewalks where I want to go	16\%
Destination(s) are too far away	32\%
Lack of comfort walking on the street next to traffic	22\%
Other	6\%
None, I feel comfortable walking	6\%
Totals 100\%	
14. WHAT IS THE MOST IMPORTANT TRANSPORTATION MODE IN THE STUDY AREA? (MULTIPLE CHOICE)	
Responses Percent	
Vehicles	30.77\%
Transit	11.54\%
Bicycling	0\%
Walking	0\%
There should be a good mix/variety	57.69\%
Other	0\%
Totals	100\%

hiouston

$\overline{H A C}$

APPENDIX C METRO PREVIOUS IOCAI SERVICE

ROUTES IN SERVICE UNTLL AUGUST 16TH, 2015

2 Bellaire

Service Metrics	Typical Headway (Minutes)	Span
Midday	15	
AM Peak	6	
PM Peak	8	
Evening	30	$4: 44 \mathrm{am}-1: 43 \mathrm{am}$
Saturday	15	$4: 14 \mathrm{am}-1: 45 \mathrm{am}$
Sunday	22	

- Headways in the non-peak direction are 15 minutes
- Westchase and Mission Bend branches split frequency evenly except during weekday peak periods when Westchase has half hourly service and all other trips go to Mission Bend.

Productivity Metrics (Weekday)	Value
Average Daily Ridership	7,354
Boardings per Revenue Mile	2.9
Boardings per Revenue Hour	32.4
Average Fare	$\$ 0.66$
Operating Ratio (Fare Revenue/Operating Cost)	18.8%
Average Subsidy per Boarding	$\$ 3.75$
Productivity Metrics (Weekend)	Value
Saturday Boardings per Revenue Hour	27.8
Sunday Boardings per Revenue Hour	30.5
Performance Metrics	Value
Average Speed (Weekday)	11.1 mph
On - Time Performance	79%

On-

Route Strengths:

- Connects to the Texas Medical Center and Red Line at TMC TC.
- Opaigntorward route along namesake street.

Operates in a straight line through diverse areas of high density and activity.

Route Challenges

- Service pattern on Mission Bend branch can be confusing
- Headways on Mission Bend branch are irregular in the peak direction due to uneven split with Westchase branch
- Crosses one railroad crossing with two tracks at grade.

Sources: Sum of Schedules and published bes shedves; 2012 Rowe Ranking Modal; 2013 Ridatect
Sources: Summary of Schedules and published bus schedules; 2012 Route Ranking Model; 2013 Ridecheck Data; 2010 Census; Team Analysis

Transit System Reimagining Going Places

4 Beechnut

Service Metrics	Typical Headway (Minutes)	Span
Midday	20	
AM Peak	10	
PM Peak	10	
Evening	30	$5: 03 \mathrm{am}-1: 43 \mathrm{am}$
Saturday	25	$5: 03 \mathrm{am}-2: 09 \mathrm{am}$
Sunday	30	

- Outbound morning headway is 15 minutes
- Inbound afternoon headway is 20 minutes.
- Inbound headways are inconsistent throughout the day.

Productivity Metrics (Weekday)	Value
Average Daily Ridership	4,469
Boardings per Revenue Mile	2.1
Boardings per Revenue Hour	29.1
Average Fare	$\$ 0.61$
Operating Ratio (Fare Revenue/Operating Cost)	15.2%
Average Subsidy per Boarding	$\$ 4.34$
Productivity Metrics (Weekend) Value Saturday Boardings per Revenue Hour 29.8 Sunday Boardings per Revenue Hour 24.0 Performance Metrics Value Average Speed (Weekday) 13.7 mph On - Time Performance 75%	

Route Strengths:

- Connects to the Texas Medical Center and Red Line at TMC TC
- Straightforward route on namesake street.
- Operates in a straight line through diverse areas of high density and activity.

Route Challenges:

- Crosses two railroad tracks at one grade crossing

Transit System Reimagining Going Places

9 Gulfton Limited

Service Metrics	Typical Headway (Minutes)	Span
Midday	40	
AM Peak	25	
PM Peak	25	
Evening	35	$5: 39 \mathrm{am}-7: 21 \mathrm{pm}$
Saturday	30	-
Sunday	-	

- Hooked to 9 North Main
- Shorter span and days of service than 9 North Main (no Sunday service).

Productivity Metrics (Weekday)
Average Daily Ridership
Boardings per Revenue Mile
Boardings per Revenue Hour
Average Fare
Operating Ratio (Fare Revenue/Operating Cost)
Average Subsidy per Boarding
Productivity Metrics (Weekend) 1.6 Saturday Boardings per Revenue Hour 11.9% Sunday Boardings per Revenue Hour $\$ 6.65$ Performance Metrics Value Average Speed (Weekday) 7.8 On - Time Performance - Value

Route Strengths:

- Serves Downtown
- Nonstop segment along Southwest Freeway.

Route Challenges

Name describes neighborhood served; operation along Gulffon Street is primarily one-way

- Large one-way loop in Gulfton neighborhood; duplicates other routes
- Numerous turns at west end

Sources: Summary of Schedules and published bus schedules; 2012 Route Ranking Model; 2013 Ridecheck Data; 2010 Census; Team Analysis

Transit System Reimagining Going Places

19 Wilcrest Crosstown

Service Metrics	Typical Headway (Minutes)	Span
Midday	45	
AM Peak	20	
PM Peak	20	
Evening	-	$5: 44 \mathrm{am}-8: 38 \mathrm{pm}$
Saturday	45	-
Sunday	-	

Productivity Metrics (Weekday)	Value		
Average Daily Ridership	1,126		
Boardings per Revenue Mile	1.6		
Boardings per Revenue Hour	21.4		
Average Fare	$\$ 0.62$		
Operating Ratio (Fare Revenue/Operating Cost)	10.8%		
Average Subsidy per Boarding	$\$ 6.65$		
Productivity Metrics (Weekend) Value Saturday Boardings per Revenue Hour 18.0 Sunday Boardings per Revenue Hour - Performance Metrics Value Average Speed (Weekday) 13.4 mph On - Time Performance 66%		$>.$	
:---			

Route Strengths:

- Straightforward route primarily on namesake street.

Route Challenges

- One-way figure eight at north end of route. ${ }^{8}$

20 Long Point Limited

Productivity Metrics (Weekday)	Value
Average Daily Ridership	2,391
Boardings per Revenue Mile	1.6
Boardings per Revenue Hour	25.6
Average Fare	$\$ 0.65$
Operating Ratio (Fare Revenue/Operating Cost)	13.1%
Average Subsidy per Boarding	$\$ 5.65$
Productivity Metrics (Weekend) Value Saturday Boardings per Revenue Hour 23.3 Sunday Boardings per Revenue Hour 22.5 Performance Metrics Value Average Speed (Weekday) 16.3 mph On - Time Performance 69%	

Route Strengths:

- Nonstop segment along Katy Freeway.
- Serves entire length of namesake street.

Route Challenges:

- Crosses two railroad crossings at grade; crossings on Canal end impact reliability as well.
- Redundant local service between NWTC and Downtown: 36, 85, 131
- Could provide frequent service between Northwest Mall and Downtown in conjunction with the 85 Antoine but schedules are not synchronized.

Sources: Summary of Schedules and published bus schedules; 2012 Route Ranking Model; 2013 Ridecheck Data; 2010 Census; Team Analysis

Transit System Reimagining Going Places

36 Kempwood

Service Metrics	Typical Headway (Minutes)	Span
Midday	60	
AM Peak	15	
PM Peak	15	
Evening	60	$6: 46 \mathrm{am}-10: 47 \mathrm{pm}$
Saturday	60	-
Sunday	-	

- Shorter weekday span and frequency and different days of service than 36 Lawndale (no Sunday service).

\mid Productivity Metrics (Weekday)
Average Daily Ridership
Boardings per Revenue Mile
Boardings per Revenue Hour
Average Fare
Operating Ratio (Fare Revenue/Operating Cost)
Average Subsidy per Boarding
Productivity Metrics (Weekend) 1.63 Saturday Boardings per Revenue Hour 11.9% Sunday Boardings per Revenue Hour $\$ 6.70$ Performance Metrics Value Average Speed (Weekday) 17.9 On - Time Performance 14.8

Route Strengths:

- Serves Downtown
- Serves length of namesake street.

Route Challenges

naton Avenue is not reflected in name

- Crosses two railroad crossings at grade.
- Confusing service pattern Washington Avenue 85 Antoine takes over evening and late nights but schedules are not coordinated during overlap time.
- Redundant service between NWTC and Downtown: 20, 85, 131.

Transit System Reimagining Going Places

Sources: Summary of Schedules and published bus schedules; 2012 Route Ranking Model; 2013 Ridecheck Data; 2010 Census; Team Analysis

Transit System Reimagining Going Places
46 Gessner Crosstown

Service Metrics	Typical Headway (Minutes)	Span
Midday	30	
AM Peak	12	
PM Peak	12	
Evening	30	$5: 10 \mathrm{am}-10: 30 \mathrm{pm}$
Saturday	30	$5: 45 \mathrm{am}-8: 04 \mathrm{pm}$
Sunday	45	

- Slightly lower frequency southbound in the morning and northbound in the
afternoon.
- Deviates to serve Gessner P\&R during peak hours.

Productivity Metrics (Weekday)	Value
Average Daily Ridership	4,983
Boardings per Revenue Mile	3.2
Boardings per Revenue Hour	39.2
Average Fare	$\$ 0.67$
Operating Ratio (Fare Revenue/Operating Cost)	21.3%
Average Subsidy per Boarding	$\$ 3.30$
Productivity Metrics (Weekend) Value Saturday Boardings per Revenue Hour 42.8 Sunday Boardings per Revenue Hour 45.5 Performance Metrics Value Average Speed (Weekday) 12.1 mph On - Time Performance 69%	

Route Strengths:

- Serves Memorial City.
- Straightforward route along namesake street.
- Operates in a straight line through diverse areas of high density and activity.

Route Challenges:

- Traffic congestion in vicinity of Katy Freeway heavily affects on-time performance.
- Span provided may not be adequate: high ridership on first and final trips most days.

Sources: Summary of Schedules and published bus schedules; 2012 Route Ranking Model; 2013 Ridecheck Data; 2010 Census; Team Analysis

53 Briar Forest Limited

Service Metrics	Typical Headway (Minutes)	Span
Midday	24	
AM Peak	12	
PM Peak	12	
Evening	60	$5: 19 \mathrm{am}-9: 49 \mathrm{pm}$
Saturday	40	$5: 12 \mathrm{am}-8: 50 \mathrm{pm}$
Sunday	40	

- Headway in nonpeak direction is 24 minutes.

\mid Productivity Metrics (Weekday)
Average Daily Ridership
Boardings per Revenue Mile
Boardings per Revenue Hour
Average Fare
Operating Ratio (Fare Revenue/Operating Cost)
Average Subsidy per Boarding
Productivity Metrics (Weekend) 1.7 Saturday Boardings per Revenue Hour 11.8% Sunday Boardings per Revenue Hour $\$ 6.87$ Performance Metrics Value Average Speed (Weekday) 20.8 On - Time Performance 16.0 Value

Route Strengths

- Serves Downtown, Uptown, and Greenway Plaza.
- Nonstop segment along Southwest freeway.

Route Challenges

- Duplicates other routes for majority of route.
- One-way segments.
- Crosses two railroad tracks at one grade crossing

Sources: Summary of Schedules and published bus schedules; 2012 Route Ranking Model; 2013 Ridecheck Data; 2010 Census; Tean Analysis

Transit System Reimagining Going Places

Transit System Reimagining Going Places

70 Memorial

Service Metrics	Typical Headway (Minutes)	Span
Midday	35	
AM Peak	25	$50 \mathrm{am}-7: 28 \mathrm{pm}$
PM Peak	35	
Evening	-	
Saturday	-	-
Sunday	-	-

$\left\lvert\,$| Productivity Metrics (Weekday) | Value |
| :--- | :---: |
| Average Daily Ridership | 429 |
| Boardings per Revenue Mile | 0.6 |
| Boardings per Revenue Hour | 10.9 |
| Average Fare | $\$ 0.63$ |
| Operating Ratio (Fare Revenue/Operating Cost) | 6.1% |
| Average Subsidy per Boarding | $\$ 11.84$ |
| Productivity Metrics (Weekend) Value
 Saturday Boardings per Revenue Hour -
 Sunday Boardings per Revenue Hour -
 Performance Metrics Value
 Average Speed (Weekday) 17.7
 On - Time Performance 67% | |$\ggg\right.$

Route Strengths:

- Serves Memorial City.

Route Challenges

- Crosses numerous railroad tracks at grade (route to be realigned in June, 2013).
- Operates through areas of relatively low density.

Sources: Summary of Schedules and published bus schedules; 2012 Route Ranking Model; 2013 Ridecheck Data; 2010 Census; Team Analysis

72 Westview Circulator

Service Metrics	Typical Headway (Minutes)	Span
Midday	25	
AM Peak	25	
PM Peak	25	
Evening	-	$5: 16 \mathrm{am}-10: 02 \mathrm{pm}$
Sałurday	40	$5: 16 \mathrm{am}-7: 53 \mathrm{pm}$
Sunday	40	

Productivity Metrics (Weekday)	Value
Average Daily Ridership	806
Boardings per Revenue Mile	1.3
Boardings per Revenue Hour	18.8
Average Fare	$\$ 0.70$
Operating Ratio (Fare Revenue/Operating Cost)	12.9%
Average Subsidy per Boarding	$\$ 5.90$
Productivity Metrics (Weekend) Value Saturday Boardings per Revenue Hour 15.0 Sunday Boardings per Revenue Hour 14.0 Performance Metrics Value Average Speed (Weekday) 14.3 mph On - Time Performance 81%	

Route Strengths:

- Serves Memorial City.

Route Challenges

- Large one-way figure eight on the west end

Unfaithful to namesake street 28

Transit System Reimagining
METRD

Sources: Summary of Schedules and published bus schedules; 2012 Route Ranking Model; 2013 Ridecheck Data; 2010 Census; Team Analysis
72 WESTVIEW CIRCULATOR
Weekdays
\qquad
$\frac{1}{1} \frac{1}{1} \frac{1}{1}$
101-1700 - Railroads

- METRO Serice Area - Parks

75 Eldridge Crosstown

Service Metrics	Typical Headway (Minutes)	Span
Midday	30	
AM Peak	20	
PM Peak	20	
Evening	-	-
Sałurday	-	-
Sunday	-	

$\left\lvert\,$| Productivity Metrics (Weekday) | Value |
| :--- | :---: |
| Average Daily Ridership | 381 |
| Boardings per Revenue Mile | 0.7 |
| Boardings per Revenue Hour | 9.5 |
| Average Fare | $\$ 0.73$ |
| Operating Ratio (Fare Revenue/Operating Cost) | 5.0% |
| Average Subsidy per Boarding | $\$ 18.35$ |
| Productivity Metrics (Weekend) Value
 Saturday Boardings per Revenue Hour -
 Sunday Boardings per Revenue Hour -
 Performance Metrics Value
 Average Speed (Weekday) 13.3 mph
 On - Time Performance 81% | | | |
| :--- |\right.

Route Strengths:

- Serves the Energy Corridor.
- Straightforward route on namesake street.

Route Challenges

- Passes through areas of low density and activity. ${ }^{29}$

Transit System Reimagining
METPD

Sources: Summary of Schedules and published bus schedules; 2012 Route Ranking Model; 2013 Ridecheck Data; 2010 Census; Team Analysis

Transit System Reimagining Going places

81 Westheimer-Sharpstown

Service Metrics	Typical Headway (Minutes)	Span
Midday	20	
AM Peak	12	
PM Peak	14	
Evening	30	$3: 49 \mathrm{am}-1: 11 \mathrm{am}$
Saturday	24	$4: 18 \mathrm{am}-1: 33 \mathrm{am}$
Sunday	24	

- Headways in nonpeak direction are 20-24 minutes
- Synchronized with 82 Westheimer - West Oaks to provide twice the frequency between Hillcroft and Downtown.

Productivity Metrics (Weekday)	Value
Average Daily Ridership	4,946
Boardings per Revenue Mile	2.9
Boardings per Revenue Hour	28.3
Average Fare	$\$ 0.62$
Operating Ratio (Fare Revenue/Operating Cost)	12.7%
Average Subsidy per Boarding	$\$ 5.86$
Productivity Metrics (Weekend) Value Saturday Boardings per Revenue Hour 26.9 Sunday Boardings per Revenue Hour 25.0 Performance Metrics Value Average Speed (Weekday) 9.9 mph On - Time Performance 69%	

Route Strengths:

- Serves Downtown and Uptown.
- Schedule synchronized with 82 Westheimer-West Oaks to provide high frequency on common segment.

Route Challenges:

- Common schedule for Westheimer services is not available
- Partially duplicates 53 Briar Forest without schedule synchronization.
- Crosses two railroad tracks at grade
- Connecting to METRORail requires riding all the way into Downtown
- Redundant service in Sharpstown area.

Sources: Summar of Scele Created by: Traffic Engineess

Transit System Reimagining Going Places

Route Strengths:

- Serves Downtown and Uptown.
- Straightforward route on namesake street.
- Schedule synchronized with 82 Westheimer-West Oaks to provide high frequency on
common segment.
- Operates in a straight line through diverse areas of high density and activity

Route Challenges:

- Common schedule for Westheimer services is not available.
- Partially duplicates 53 Briar Forest without schedule synchronization.
- Crosses two railroad tracks at grade.
- Connecting to METRORail requires riding all the way into Downtown.
- Reliability impacted by Galleria-area traffic.

Sources: Summary of Schedules and published bus schedules; 2012 Route Ranking Model; 2013 Ridecheck Data; 2010 Census; Team Analysis

131 Memorial Limited

Service Metrics	Typical Headway (Minutes)	Span
Midday	45	
AM Peak	15	
PM Peak	15	
Evening	55	
Saturday	42	$6: 02 \mathrm{am}-9: 25 \mathrm{pm}$
Sunday	-	-

- Frequency is lower in nonpeak direction West Belt.

Productivity Metrics (Weekday)	Value
Average Daily Ridership	1,694
Boardings per Revenue Mile	1.0
Boardings per Revenue Hour	18.4
Average Fare	$\$ 0.65$
Operating Ratio (Fare Revenue/Operating Cost)	8.6%
Average Subsidy per Boarding	$\$ 8.89$
Productivity Metrics (Weekend)	Value
Saturday Boardings per Revenue Hour	15.3
Sunday Boardings per Revenue Hour	-
Performance Metrics	Value
Average Speed (Weekday)	18.9 mph
On - Time Performance	71%

Route Strengths:

- Nonstop segment along Katy Freeway managed lanes and I-10 west HOV.

Route Challenges:

Passes through areas of relatively low density and activity

- Redundant service between NWTC and Downtown: 20, 36, 85.

Transit System Reimagining Going Places

Transit System Reimagining Going Places

132 Harwin Limited

Service Metrics	Typical Headway (Minutes)	Span
Midday	45	
AM Peak	8	
PM Peak	8	
Evening	25	$5: 40 \mathrm{am}-7: 10 \mathrm{pm}$
Saturday	40	-
Sunday	-	

- Handful of weekday trips and no weekend trips serve Cook Road branch
and Westpark deviation.
- Some peak direction trips operate between Wheeler Station and

Downtown. ${ }^{38}$

Productivity Metrics (Weekday)	Value
Average Daily Ridership	2,251
Boardings per Revenue Mile	1.3
Boardings per Revenue Hour	21.4
Average Fare	$\$ 0.62$
Operating Ratio (Fare Revenue/Operating Cost)	9.4%
Average Subsidy per Boarding	$\$ 7.93$
Productivity Metrics (Weekend) Value Saturday Boardings per Revenue Hour 15.8 Sunday Boardings per Revenue Hour - Performance Metrics Value Average Speed (Weekday) 16.6 mph On - Time Performance 74%	

Route Strengths:

- Nonstop segment on Southwest Freeway; uses HOV lane in peak direction.

Route Challenges

Sources: Summary of Schedules and published bus schedules; 2012 Route Ranking Model; 2013 Ridecheck Dała; 2010 Census; Team Analysis

214 Northwest Station

Service Metrics	Typical Headway (Minutes)	Span
Midday	-	
AM Peak	5	
PM Peak	5	$2: 55 \mathrm{pm}-7: 29 \mathrm{pm}$
Evening	-	
Saturday	-	-
Sunday	-	-

- Does not serve Northwest TC in nonpeak direction
- Midday and evening service provided by 219 Northwest Station/West Little York-Pinemont.

$\left\lvert\,$| Productivity Metrics (Weekday) | Value |
| :--- | :---: |
| Average Daily Ridership | 2,334 |
| Boardings per Revenue Mile | 1.1 |
| Boardings per Revenue Hour | 32.3 |
| Average Fare | $\$ 3.25$ |
| Operating Ratio (Fare Revenue/Operating Cost) | 53.1% |
| Average Subsidy per Boarding | $\$ 6.80$ |
| Productivity Metrics (Weekend) Value
 Saturday Boardings per Revenue Hour -
 Sunday Boardings per Revenue Hour -
 Performance Metrics Value
 Average Speed (Weekday) 30.0 mph
 On - Time Performance 84% | |$>=$| |
| :--- |\right.

Route Strengths:

- Serves Downtown
- Uses Northwest Freeway HOT lane in peak direction.

Route Challenges

- Route name is confusing. Northwest Station/Northwest TC
- No local bus connections at Park \& Ride 40

Transit System Reimagining Going Places

Sources: Summary of Schedules and published bus schedules; 2012 Route Ranking Model; 2013 Ridecheck Data; 2010 Census; Team Analysis

Transit System Reimagining Going Places
216 West Little York-Pinemont

Service Metrics	Typical Headway (Minutes)	Span
Midday	-	$\begin{aligned} & \text { 5:20am - 9:24am } \\ & \text { 3:10pm -7:15pm } \end{aligned}$
AM Peak	15	
PM Peak	15	
Evening	-	
Saturday	-	-
Sunday	-	-

- Does not serve Northwest TC in nonpeak direction
- Midday and evening service provided by 219 Northwest Station/West Little York-Pinemont.
- Some PM peak trips also serve Northwest Station P\&R.

Productivity Metrics (Weekday)	Value
Average Daily Ridership	687
Boardings per Revenue Mile	0.9
Boardings per Revenue Hour	21.7
Average Fare	$\$ 2.59$
Operating Ratio (Fare Revenue/Operating Cost)	30.7%
Average Subsidy per Boarding	$\$ 11.31$
Productivity Metrics (Weekend) Value Saturday Boardings per Revenue Hour - Sunday Boardings per Revenue Hour - Performance Metrics Value Average Speed (Weekday) 25.5 mph On - Time Performance 84%	

Route Strengths:

- Serves Downtown
- Uses Northwest Freeway HOT lane in peak direction.

Route Challenges:

OT eliminating direct connector between Pinemont Park \& Ride and HOT lane in January, 2014.

Sources: Summary of Schedules and published bus schedules; 2012 Route Ranking Model; 2013 Ridecheck Data; 2010 Census; Team Analysis

217 Cypress

Service Metrics	Typical Headway (Minutes)	Span
Midday	-	
AM Peak	6	$3: 05 \mathrm{pm}-7: 55 \mathrm{pm}$
PM Peak	5	
Evening	-	-
Saturday	-	-
Sunday	-	

- Does not serve Northwest TC in nonpeak direction.

Productivity Metrics (Weekday)	Value
Average Daily Ridership	1,502
Boardings per Revenue Mile	0.9
Boardings per Revenue Hour	29.9
Average Fare	$\$ 3.88$
Operating Ratio (Fare Revenue/Operating Cost)	49.1%
Average Subsidy per Boarding	$\$ 9.07$
Productivity Metrics (Weekend) Value Saturday Boardings per Revenue Hour - Sunday Boardings per Revenue Hour - Performance Metrics Value Average Speed (Weekday) 32.9 mph On - Time Performance 83%	

Route Strengths:

- Serves Downtown
- Uses Northwest Freeway HOT lane in peak direction

Route Challenges
 - No midday or evening service

- No local bus connections at Park \& Ride
- Distance from Downtown restricts number of recycled buses/return trips.

Transit System Reimagining Going Places

Sources: Summary of Schedules and published bus schedules; 2012 Route Ranking Model; 2013 Ridecheck Data; 2010 Census; Team Analysis

Transit System Reimagining Going Places
219 NW Station/WLY/Pinemont

Service Metrics	Typical Headway (Minutes)	Span
Midday	60	8:00am $-3: 47 \mathrm{pm}$ AM Peak$: 05 \mathrm{pm}-10: 32 \mathrm{pm}$
PM Peak	-	
Evening	60	-
Saturday	-	-
Sunday	-	

- Peak service provided by 214 Northwest Station and 216 West Little York-

Pinemont.

Productivity Metrics (Weekday)	Value
Average Daily Ridership	257
Boardings per Revenue Mile	0.5
Boardings per Revenue Hour	29.9
Average Fare	\$2.35
Operating Ratio (Fare Revenue/Operating Cost)	31.4\%
Average Subsidy per Boarding	\$5.43
Productivity Metrics (Weekend)	Value
Saturday Boardings per Revenue Hour	-
Sunday Boardings per Revenue Hour	-
Performance Metrics	Value
Average Speed (Weekday)	23.4 mph
On - Time Performance	not available

Route Strengths:

- Serves Downtown
- Some trips use Northwest Freeway HOT lane.

Sources: Summary of Schedules and published bus schedules; 2012 Route Ranking Model; 2013 Ridecheck Data; 2010 Census; Team Analysis

221 Kingsland

Service Metrics	Typical Headway (Minutes)	Span
Midday	-	$4: 30 \mathrm{am}-9: 25 \mathrm{am}$ AM Peak$\quad 4$
$3: 04 \mathrm{pm}-7: 22 \mathrm{pm}$		
PM Peak	5	
Evening	-	-
Saturday	-	-
Sunday	-	

- Some early morning trips also serve Addicks P\&R
- Midday and evening service provided by 229 Kingsland/Addicks.

Productivity Metrics (Weekday)	Value		
Average Daily Ridership	2,307		
Boardings per Revenue Mile	0.9		
Boardings per Revenue Hour	30.4		
Average Fare	$\$ 4.44$		
Operating Ratio (Fare Revenue/Operating Cost)	54.8%		
Average Subsidy per Boarding	$\$ 9.69$		
Productivity Metrics (Weekend) Value Saturday Boardings per Revenue Hour - Sunday Boardings per Revenue Hour - Performance Metrics Value Average Speed (Weekday) 31.2 mph On - Time Performance 80%		$>⿱$	
:---			

Route Strengths:

- Utilizes Katy Freeway managed lanes.

Route Challenges

- No local bus connection at Park \& Ride
- Parking lot is capacity constrained

Transit System Reimagining Going Places

Weekdays

- No local bus connections at Park \& Ride.
- Leased spaces in parking lot; cpacity constrained.

Sources: Summary of Schedules and published bus schedules; 2012 Route Ranking Model; 2013 Ridecheck Data; 2010 Census; Team Analysis

Route Challenges:

Productivity Metrics (Weekday)	Value
Average Daily Ridership	713
Boardings per Revenue Mile	0.8
Boardings per Revenue Hour	23.3
Average Fare	$\$ 4.15$
Operating Ratio (Fare Revenue/Operating Cost)	45.0%
Average Subsidy per Boarding	$\$ 11.13$
Productivity Metrics (Weekend) Value Saturday Boardings per Revenue Hour - Sunday Boardings per Revenue Hour - Performance Metrics Value Average Speed (Weekday) 31.4 mph On - Time Performance 88%	

Route Strengths:

- Serves Downtown
- Utilizes Katy Freeway managed lanes

Route Challenges

Transit System Reimagining Going Places
 ling places

228 Addicks

Service Metrics	Typical Headway (Minutes)	Span
Midday	-	$\begin{aligned} & \text { 4:30am - 9:21am } \\ & \text { 3:05pm - } 7: 07 \mathrm{pm} \end{aligned}$
AM Peak	6	
PM Peak	4	
Evening	-	
Saturday	-	-
Sunday	-	-

- A handful of trips serve Northwest TC and Houston Center
- Midday and evening service provided by 229 Kingsland/Addicks.

\mid Productivity Metrics (Weekday)
Average Daily Ridership
Boardings per Revenue Mile
Boardings per Revenue Hour
Average Fare
Operating Ratio (Fare Revenue/Operating Cost)
Average Subsidy per Boarding
Productivity Metrics (Weekend) 30.1 Saturday Boardings per Revenue Hour 44.26 Sunday Boardings per Revenue Hour $\$ 9.71$ Performance Metrics Value Average Speed (Weekday) - On - Time Performance -

Route Strengths:

- Utilizes Katy Freeway managed lanes.
- Local bus connection at Park \& Ride.

Route Challenges

- Limited access to lot via Park Row.

Transit System Reimagining Going Places
228 ADDICKS

\quad| $2-10$ |
:---
$-11-30$

Sources: Summary of Schedules and published bus schedules; 2012 Route Ranking Model; 2013 Ridecheck Data; 2010 Census; Team Analysis

Transit System Reimagining Going Places

Sources: Summary of Schedules and published bus schedules; 2012 Route Ranking Model; 2013 Ridecheck Data; 2010 Census; Team Analysis

Productivity Metrics (Weekday)	Value
Average Daily Ridership	468
Boardings per Revenue Mile	0.7
Boardings per Revenue Hour	17.7
Average Fare	$\$ 2.87$
Operating Ratio (Fare Revenue/Operating Cost)	47.7%
Average Subsidy per Boarding	$\$ 3.40$
Productivity Metrics (Weekend) Value Saturday Boardings per Revenue Hour - Sunday Boardings per Revenue Hour - Performance Metrics Value Average Speed (Weekday) 24.3 mph On - Time Performance not available	

Route Strengths:

- Serves Downtown
- Utilizes Katy Freeway managed lanes
- Local bus connection at Addicks.

Route Challenges:

- Significant seating capacity available on most trips.

Weekdays

$$
\begin{aligned}
& \text { - Main Street Line - Rairoads } \\
& \text { - East End Line 口METRO Service Area }
\end{aligned}
$$

$\begin{array}{ll}\text { - North Line } & \text { Parks } \\ \text { - Sotheost Line } \\ \text { - Roil Stops } & \text { Bodies of Woter } \\ \end{array}$

274 Westchase/Gessner

Service Metrics	Typical Headway (Minutes)	Span
Midday	-	
AM Peak	15	$30 \mathrm{pm}-7: 52 \mathrm{pm}$
PM Peak	15	
Evening	-	-
Saturday	-	-
Sunday	-	

- Trips in the nonpeak direction do not serve Gessner P\&R.
- Westchase $P \& R$ served in the midday and evening by local routes.

Productivity Metrics (Weekday)	Value
Average Daily Ridership	431
Boardings per Revenue Mile	0.9
Boardings per Revenue Hour	16.9
Average Fare	$\$ 2.74$
Operating Ratio (Fare Revenue/Operating Cost)	29.9%
Average Subsidy per Boarding	$\$ 13.77$
Productivity Metrics (Weekend) Value Saturday Boardings per Revenue Hour - Sunday Boardings per Revenue Hour - Performance Metrics Value Average Speed (Weekday) 18.4 mph On - Time Performance 86%	

Route Strengths:

- Serves Downtown
- Utilizes Southwest Freeway HOV lane in the peak direction.
- Local bus connections at Park \& Rides

Route Challenges

or evening service, though the Westchase lot is served by the 132 Harwin Limited.

Transit System Reimagining Going places

Transit System Reimagining Going Places

285 Kingsland/Uptown

Service Metrics	Typical Headway (Minutes)	Span
Midday	-	$5: 45 \mathrm{am}-9: 08 \mathrm{am}$
AM Peak	20	
PM Peak	20	
Evening	-	-
Saturday	-	-
Sunday	-	

- New route in 2012

\mid Productivity Metrics (Weekday)
Average Daily Ridership
Boardings per Revenue Mile
Boardings per Revenue Hour
Average Fare
Operailable
Average Subailable (Fare Revenue/Operating Cost)
Productivity Metrics (Weekend) not available Saturday Boardings per Revenue Hour not available Sunday Boardings per Revenue Hour not available Performance Metrics Value Average Speed (Weekday) - On - Time Performance - $>.$Value

Route Strengths

- Serves Uptown.
- Provides connection to other Katy and Northwest corridor services at NWTC.

Route Challenges

- No midday or evening service.
- No midday or evening service.

Sources: Summary of Schedules and published bus schedules; 2012 Route Ranking Model; 2013 Ridecheck Data; 2010 Census; Team Analysis

298 Kingsland/Addicks/TMC

Service Metrics	Typical Headway (Minutes)	Span
Midday	-	$5: 06 \mathrm{am}-9: 05 \mathrm{am}$
AM Peak	8	
PM Peak	8	
Evening	-	-
Saturday	-	-
Sunday	-	

- Does not serve Northwest TC in the nonpeak direction

Productivity Metrics (Weekday)	Value
Average Daily Ridership	1,117
Boardings per Revenue Mile	0.9
Boardings per Revenue Hour	21.5
Average Fare	$\$ 3.60$
Operating Ratio (Fare Revenue/Operating Cost)	36.0%
Average Subsidy per Boarding	$\$ 13.12$
Productivity Metrics (Weekend) Value Saturday Boardings per Revenue Hour - Sunday Boardings per Revenue Hour - Performance Metrics Value Average Speed (Weekday) 24.0 On - Time Performance not available	

Route Strengths

- Utilizis the Texas Medical Center
- Provides connection to other Katy and Northwest corridor services at NWTC

Route Challenges
 No midday or evening service.

Transit System Reimagining Going places

Sources: Summary of Schedules and published bus schedules; 2012 Route Ranking Model; 2013 Ridecheck Data; 2010 Census; Team Analysis

APPENDIX D
 METRO NEW BUS
 NETWORK ROUTES

PROPOSED ROUTES AS OF OCTOBER 2014
ROUTES AND ROUTE NUMBERS CURRENTLY IN USE MAY DIFFER

2 Bellaire

Frequent Network
Mission Bend P\&R to TMC TC:

Peak Headway	Base Headway	Span
10	15	20
Minutes	Minutes	Hours (approx.)

Activity Centers:

- TMC

Rail Line Connections:
Frequent Network Connections

- 4 Beechnut, 27 Shepherd, 33 Post Oak, 46 Gessner, 56 Airline/Montrose, 63

Transit Center and Park \& Ride Connections:

- Mission Bend P\&R, Bellaire TC, TMC TC
astbound Route: R Metro, L Bellaire, Bellaire TC, S Holcombe, R Fannin, R TMC TC Westbound Route:
TMC TC, R Pressler, L Holcombe, S Bellaire, Bellaire TC, R Metro, L Mission Bend P\&R Proposed Equipment:
60^{\prime} transit bus as fleet allows or 40^{\prime} transit bus

Transit System Reimagining Going places

2 Bellaire

4 Beechnut

Frequent Network
Mission Bend P\&R to Eastwood TC

Peak Headway	Base Headway	Span
40	5	20
Minutes	Minutes	Hours (approx.)

Activity Centers:

- TMC

Rail Line Connections:
TMC Transit Center Station (Red)
Frequent Network Connections:

- 2 Bellaire, 25 Richmond, 27 Shepherd, 40 Heights/Telephone/41 Kirby Polk, 46 Gessner, 50 Broadway, 54 Scott, 56 Airline/Montrose, 63 Fondren, 65 Bissonnet, 80 MLK/Lockwood
Transit Center and Park \& Ride Connections:
- Mission Bend P\&R, TMC TC

Eastbound Route:
Mission Bend P\&R, L Metro, L Alief Clodine, L Sugarland Howell, R Bellaire, L Pavilion, L Pavilion Point, R Sugarland Howell, L Beechnut, S N Braeswood, LS Main, R Pressler, L TMC TC, L Pressler, L Bertner, R Moursund, L S MacGregor, L Ardmore, L N Macgregor, R Ennis, R Cleburne, L Scott, R Holman, L Cullen, R Elgin, R Eastwood

Westbound Route:

- Eastwood TC, L Elgin, L Cullen, R Holman, L Scott, R Cleburne, L Ennis, R N MacGregor, R Moursund, L Bertner, R Pressler, R TMC TC, R Pressler, L S Main, R N Braeswood, S Beechnut, R Sugarland Howell, L Pavilion Point, R Pavilion, R Bellaire, L sugarland Howell, R Alief Clodine, R Mission Bend P\&R
Sosed Equipment:
- 60 ' transit bus as fleet allows or 40^{\prime} transit bus

Base headway includes weekday middays and weekends. Evening headway is 30 minutes. Span is consistent seven days a week.

Transit System Reimagining Going Places

REVISED - Elgin Deviation

9 Gulfton/Holman

Sharpstown to Eastwood TC:

Peak Headway	Base Headway	Span
5	30	8
Minutes	Minutes	Hours (approx.)

Activity Centers:

- Greenway Plaza, UH

Rail Line Connections:

- Ensemble/HCC Station (Red), Robertson Stadium/UH/TSU Station (Purple)

Frequent Network Connections:
2 Bellaire, 4 Beechnut, 25 Richmond, 27 Shepherd, 33 Post Oak, 50 Broadway, 54 Scott, 63 Fondren, 82 Westheimer, 80 MLK/Lockwood, 152/153 Harwin Flyer Transit Center and Park \& Ride Connections:

- Eastwood TC

Eastbound Route:

- Bonhomme \& Clarewood, R Clarewood, L Fondren, L Bellaire, L Rookin, R High Star, L Hillcroft, R Gulfton, L West Loop frontage, R Westpark, L Kirby, R Southwest Freeway frontage, enter ramp after Shepherd, Exit Spur 527, Exit Lovisiana, R Elgin, R Milam, L Holman, L Crawford, R Elgin, R Dowling, L Holman, L Cullen, R Elgin, S Lockwood, R Eastwood TC
Westbound Route:
- Eastwood TC, LMunger, LMaplewood, S Elgin, L Cullen, R Holman, R Dowling, L Elgin, L LaBranch, R Holman, R Travis, L Elgin, L Smith, S Spur 527, S Southwest Freeway, Exit Shepherd, S Southwest Freeway frontage, L Kirby, R Westpark, L West Loop frontage, R Gulfton, L Hillcroff, R High Star, L Rookin, R Bellaire, R Fondren, R Bellerive, L Reims, R Harwin, R Bonhomme, Bonhomme \& Clarewood
Proposed Equipment:
- 40^{\prime} transit bus

Base headway includes weekday middays, weekends, and evenings. Span is consistent seven days a week.

Transit System Reimagining Going Places

9 Gulfton/Holman

Half Mile Access

23 Clay - West 43rd

West Belt to Northline TC:

Peak Headway	Base Headway	Span
$\mathbf{3 0}$		4
Minutes	Minutes	Hours (approx.)

Rail Line Connections:

- Northline Transit Center/HCC Station (Red)

Frequent Network Connections:
45 Tidwell West, 27 Shepherd, 46 Gessner, 56 Airline/Montrose, 85 Antoine/ Washington
Transit Center and Park \& Ride Connections:

- Northline TC/HCC

Eastbound Route:

- Westway Park \& Clay, L Clay, S 43rd, S Crosstimbers, L Fulton, L Northline TC

Westbound Route:
Northline TC, R Fulton, R Crosstimbers, S 43rd, S Clay, R West Belt frontage, R
Capital Park, R Westway Park, Westway Park \& Clay
Proposed Equipment:

- 40^{\prime} transit bus

Base headway includes weekday middays, weekends, and evenings. Span is consistent seven days a week.

Transit System Reimagining Going Places

23 Clay - West 43rd

$$
\begin{aligned}
& \text { Base Headway } \\
& 10,12 \text {, or } 15 \text { minutes } \\
& =30 \text { minutes } \\
& 60 \text { minutes } \\
& \text { an eak Only }
\end{aligned}
$$

$=$ Red Line $=$ Green Line

- Purple Line
© Transit Center
© Park \& Ride
- Quickline Sto - Quickline Sto

REVISED - Wheeler Station to Blodgett Routing
25 Richmond
Frequent Network
Eastwood TC Westchase:

Peak Headway	Base Headway	Span
40	-	2
Minutes	Minutes	Hours (approx.)

Westchase to Mission Bend P\&R:

Peak Headway	Base Headway	Span
20	$\mathbf{3 0}$	$\mathbf{1 8}$
Minutes	Minutes	Hours (approx.)

Activity Centers:

Activity Centers: \quad Westchase, Uptown/Galleria, Greenway Plaza, UH, TSU
Rail Line Connections:

- Wheeler Station (Red), UH South/University Oaks Station (Purple)

Frequent Network Connections:
Frequent Network Connections: 2 Bellaire, 4 Beechnut, 27 Shepherd, 33 Post Oak, 40 Heights/Telephone/41 Kirby Polk, 46 Gessner, 50 Broadway, 54 Scott, 56 Airline/Montrose, 63 Fondren, 65 Polk, 46 Gessner, 50 Broadway, 54 Scott, 56 Ai
Bissonnet, 80 MLK/Lockwood, 82 Westheimer
Transit Center and Park \& Ride Connections:

- Mission Bend P\&R, Wheeler TC, Eastwood TC

Westbound Route:

- Eastwood TC, L Lockwood, L Spur 5, R University, L Calhoun, R Wheeler, L Scott, R Blodgett, R Live Oak, L Wheeler, L Wheeler TC, R Fannin, R Blodgett, R Main, L Richmond, (short line: R Walnut Bend, L Meadowglen, Meadowglen \& Wicrest), L Eastbound Route:
- Mission Bend P\&R, R Alief Clodine, L Synott, R Ashford Point, L Dairy Ashford, R Richmond (short line: Meadowglen \& Wilcrest, R Wilcrest, R Westheimer, R Walnut Bend, L Richmond), S Wheeler, R Live Oak, L Blodgett, LScott, R Wheeler, L Calhoun, R University, L Spur 5, R Lockwood, R Eastwood TC
Proposed Equipment:
- 60^{\prime} transit bus as fleet allows or 40^{\prime} transit bus

Base headway includes weekday middays and weekends. Evening headway is 30 minutes. Span is consistent seven days a week.

Transit System Reimagining Going Places

25 Richmond

\qquad

Base Headway

4west
houston

26 Long Point/Cavalcade

 Frequent NetworkMemorial City to Kashmere TC:

Peak Headway	Base Headway	Span
\square	5	8
Minutes	Minutes	Hours (approx.)

Activity Centers

- Memorial City

Rail Line Connections:
Frequent Network Connections:
33 Post Oak, 27 Shepherd, 46 Gessner, 51/52 Hardy, 56 Airline/Montrose, 80 MLK Lockwood, 85 Antoine/Washington, 160s Memorial City Flyer
Transit Center and Park \& Ride Connections

- Hempstead Mini Terminal, Kashmere TC

Eastbound Route
Memorial \& Gaylord, R Barryknoll, R Gessner, R Long Point, R Hempstead,
8th S 20th, S Cavalade L Hirsch R Kashmere TC
Westbound Route:
Kashmere TC, L Hirsch, R Cavalcade, S 20th, S 18th, R Hempstead, L Long Point, L Gessner, L Katy Freeway frontage, R Memorial City, Memorial City \& Gaylord
Proposed Equipment:

- 40^{\prime} transit bus

Base headway includes weekday middays and weekends. Evening headway is 30 minutes. Span is consistent seven days a week.

36 Kempwood

West Belt to Northline TC:

Peak Headway	Base Headway	Span
5	30	8
Minutes	Minutes	Hours (approx.)

Rail Line Connections:

- Northline Transit Center/HCC Station (Red)

Frequent Network Connections:
27 Shepherd, 45 Tidwell West, 46 Gessner, 56 Airline/Montrose, 85 Antoine Washington
Transit Center and Park \& Ride Connections:

- Northline TC

Eastbound Route:
Westway Park \& Clay, R Clay, L West Belt frontage, L Kempwood, S 34th, L Shepherd, R Crosstimbers, LIH 45 Frontage, R Lyerly, Lyerly \& Fulton
Westbound Route:
Lyerly \& Fulton, R Fulton, R Crosstimbers, L Shepherd, R 34th, S Kempwood, R Wes Belt frontage, R Capital Park, R Westway Park, Westway Park \& Clay
Proposed Equipment:

- 40^{\prime} transit bus

Transit System Reimagining
MERRI

36 Kempwood
\qquad

Base Headway	
$=10,12$ or 15 minutes	Red Line
$=30$ minutes	Green Line
$=60$ minutes	Purple Line
	- Rail Station

© Transit Center
Park \& Ride Quickline Sto - Railroads

39 Katy Freeway

Sherwood Forest to Northwest TC:

Peak Headway	Base Headway	Span
30		4
Minutes	Minutes	Hours (approx.)

Activity Centers:

- Memorial City

Frequent Network Connections:

- 26 Long Point/Cavalcade, 33 Post Oak, 46 Gessner, 85 Antoine/Washington, 160s Memorial

Transit Center and Park \& Ride Connections:

- Northwest TC
- Sherwood Forest \& Chatterton, R Katy Fwy frontage, U turn Kirkwood, L N Post Oak, R Old Katy, R Nowthwest TC
Westbound Route:
- Northwest TC, L Old Katy, S Katy Fwy frontage, R Upland, L Chatterton, L Sherwood Forest, Sherwood Forest \& Chatterton
Proposed Equipment:
- 40^{\prime} transit bus or 25^{\prime} ARBOC bus

Base headway includes weekday middays, weekends, and evenings. Span is consistent seven days a week.

Transit System Reimagining Going Places

39 Katy Freeway

Base Headway

- 10,12 , or 15 minutes
$=30$ minutes

60 minutes
= Red Line
= Green Line

- Gurpen Line Line
- Purple Line
- Rail Station
(3) Transit Center
© Park \& Ride
- Park \& Ride Quickline Sto
Railroads

43 Kirkwood

West Bellfort P\&R to Briar Forest:

Peak Headway	Base Headway	Span
$\mathbf{3} 0$		4
Minutes	Minutes	Hours (approx.)

Frequent Network Connections:

- 2 Bellaire, 4 Beechnut, 65 Bissonnet, 82 Westheimer

Transit Center and Park \& Ride Connections

- W Bellfort P\&R

Northbound Route:
W Bellfort P\&R, L Roark, R Bellfort, R Kirkwood, L Harwin, R W Houston Center, R Richmond, L Kirkwood, R Briar Forest, R Wilcrest, R Westheimer, R Hayes, Hayes \& Westheimer
Southbound Route:
Hayes \& Westheimer, L Briar Forest, L Kirkwood, R Richmond, L W Houston Center, L Harwin, R Kirkwood, L Bellfort, L Roark, R W Bellfort P\&R
Proposed Equipment:
25' Arboc bus

Base headway includes weekday middays, weekends, and evenings. Span is consistent seven days a week.

Transit System Reimagining Going Places

43 Kirkwood
\qquad

Base Headway

$$
\begin{array}{ll}
\text { 10, 12, or } 15 \text { minutes } & \text { Red Line } \\
=30 \text { minutes } & \text { Green Line } \\
=60 \text { minutes } & \text { Purple Line } \\
\text { " } 1 / \text { Peak Only } & \text { - Rail Station }
\end{array}
$$

(3) Transit Center
© Park \& Ride

- Quickline Sto - Quickline Sto

Transit System Reimagining Going Places

46 Gessner

Frequent Network
West Airport to Tidwell:

Peak Headway	Base Headway	Span
	-	8
Minutes	Minutes	Hours (approx.)

Activity Centers

, Mal City
Frequent Network Connections:
2 Bellaire, 4 Beechnut, 25 Richmond, 26 Long Point/Cavalcade, 45 Tidwell West, 65 Bissonnet, 82 Westheimer, 152/153 Harwin Flyer, 160s Memorial City Flyer
Transit Center and Park \& Ride Connections:
Northbound Route:
Fondren Meadow \& Gessner, R Airport, R Gessner, R Hempstead, L Tidwell, R Fairbanks N Houston, Fairbanks N Houston \& Tidwell
Southbound Route:
Fairbanks N Houston \& Tidwell, R Hempstead, L Gessner, L Fondren Meadow Fondren Meadow \& Gessner
Proposed Equipment:

- 60' transit bus as fleet allows or 40^{\prime} transit bus

58 Hammerly

West Belt to Northwest TC:

Peak Headway	Base Headway	Span
$\mathbf{3} 0$		4
Minutes	Minutes	Hours (approx.)

Frequent Network Connections:
26 Long Point/Cavalcade, 33 Post Oak, 46 Gessner, 85 Antoine/Washington, 160s Memorial City Flye
Transit Center and Park \& Ride Connections

- Hempstead Mini Terminal, Northwest TC

Eastbound Route:
Westway Park \& Clay, R Clay, L Brittmore, L Hammerly, R Hempstead, R N Post Oak, L Old Katy, R Northwest TC
Westbound Route:
Northwest TC, L Old Katy, R N Post Oak, L Hempstead, L Hammerly, R Brittmore, R Clay, L West Belt frontage, R Capital Park, R Westway Park, Westway Park \& Clay Proposed Equipment:

- 40^{\prime} transit bus

Base headway includes weekday middays, weekends, and evenings. Span is consistent seven days a week.

Transit System Reimagining Going Places

58 Hammerly

Base Headway
$=10,12$, or 15 minutes
$=30$ minutes

- 60 minutes

60 minutes

- Red Line
= Green Line - Gurple Line - Purple Line
- Rail Station
(3) Transit Center
© Park \& Ride
- Quickline Stop - Railroads

63 Fondren

Frequent Network
Missouri City P\&R to Westheimer:

Peak Headway	Base Headway	Span
5	-5	20
Minutes	Minutes	Hours (approx.)

Frequent Network Connections:
2 Bellaire, 4 Beechnut, 25 Richmond, 65 Bissonnet, 82 Westheimer, 152/153 Harwin Flyer
Transit Center and Park \& Ride Connections:

- Missouri City P\&R

Northbound Route:

- Missouri City P\&R, R Fondren, R Woodway, Woodway \& Westheimer

Southbound Route:

- Woodway \& Westheimer, R Westheimer, L Fondren, L Missouri City P\&R

Proposed Equipment:
60' transit bus as fleet allows or 40^{\prime} transit bus

Base headway includes weekday middays and weekends. Evening headway is 30 minutes. Span is consistent seven days a week.

Transit System Reimagining Going places

63 Fondren
\qquad

© Transit Center
© Transit Cente

- Park \& Ride Quickline Sto

67 Dairy Ashford

Addicks P\&R to Bissonnet:

Peak Headway	Base Headway	Span
30		4
Minutes	Minutes	Hours (approx.)

Extension to Addicks P\&R pending completion of Park Row

Activity Centers:

- Energy Corridor

Frequent Network Connections:

- 2 Bellaire, 4 Beechnut, 65 Bissonnet, 82 Westheimer

Transit Center and Park \& Ride Connections

- Addicks P\&R

North Route:

- Dairy View \& Bissonnet, R Bissonnet, R Dairy Ashford, S Park Row, L Addicks P\&R
- Interim layover at Barryknoll \& Dairy Ashford pending completion of Park Row.

Southbound Route:
Addicks P\&R, R Park Row, S Dairy Ashford, L Brookglade, R Dairy View, Dairy View \& Bisson
Proposed Equipment:

- 40^{\prime} transit bus

Transit System Reimagining Going Placen

67 Dairy Ashford

Half Mile Access
(1) 0
0.75
1.5
(ㅇ) Transit Center
© Park \& Ride

- Quickline Stop
- Quickline Sto - Railroads

70 Memorial

Brittmoore to Northwest TC:

Peak Headway	Base Headway	Span
$\mathbf{3} 0$		4
Minutes	Minutes	Hours (approx.)

Continues to/from 72 Westview.
Coordinated with 72 Westview to provide higher frequency between Brittmoore and Gessner

Activity Centers:

- Uptown, Memorial City

Frequent Network Connections:
26 Long Point/Cavalcade, 33 Post Oak, 46 Gessner, 85 Antoine/Washington, 160s Memorial City Flye
Transit Center and Park \& Ride Connections

- Northwest TC

Eastbound Route:
Business Center \& Westview Circle, R Westview Circle, R Brittmoore, R Westview, R Gessner, L Memorial, L N Post Oak, R Old Katy, R Northwest TC
Westbound Route:
Northwest TC, L Old Katy, L N Post Oak, R Memorial, R Gessner, L Westview, L
Business Center, Business Center \& Westview
Proposed Equipment:

- 40 transit bus

Transit System Reimagining Going Places

70 Memorial

Base Headway
$=10,12$, or 15 minutes
$=30$ minutes
$=30$ minutes
-60 minutes
60 minutes
$=$ Red Line
$=$ Green Line

- Purple Line
(3) Transit Center
© Park \& Ride
- Quickline Stop - Railroads

Base headway includes weekday middays, weekends, and evenings. Span is consistent seven days a week.

REVISED - Span

72 Westview

Memorial City to Northwest TC:

Peak Headway	Base Headway	Span
30		5
Minutes	Minutes	Hours (approx.)

Continues to/from 70 Memorial.
Coordinated with 70 Memorial to provide higher frequency between Brittmoore and Gessner.

Activity Centers

- Memorial City

Frequent Network Connections:
26 Long Point/Cavalcade, 33 Post Oak, 46 Gessner, 85 Antoine/Washington, 160s Memorial City Flyer
Transit Center and Park \& Ride Connections

- Northwest TC

Eastbound Route:
Business Center \& Westview Circle, R Westview Circle, R Brittmoore, R Westview, R Gessner, L Katy Fwy Frontage, U turn Campbell, R Blalock, R Westview, R Silber, L Katy Fwy frontage, L N Post Oak, R Old Katy, R Northwest TC
Westbound Route:

- Northwest TC, L Old Katy, S Katy Fwy frontage, R Silber, L Westview, L Blalock, R Katy Fwy frontage, R Gessner, L Westview, L Business Center, Business Center \& Westview Circle
Proposed Equipment:
- 40^{\prime} transit bus

Base headway includes weekday middays, weekends, and evenings. Span is consistent seven days a week.

Transit System Reimagining Going places

72 Westview

$$
\begin{array}{ll}
\text { Base Headway } \\
=10,12 \text {, or } 15 \text { minutes } & =\text { Red Line } \\
=30 \text { minutes } & =\text { Green Line } \\
=60 \text { minutes } & =\text { Purple Line } \\
& \text { - Rail Station }
\end{array}
$$

houston

75 Eldridge

Addicks P\&R to West Oaks Mall:

Peak Headway	Base Headway	Span
30		4
Minutes	Minutes	Hours (approx.)

Activity Centers:

- Energy Corridor

Frequent Network Connections:

- 2 Bellaire, 4 Beechnut, 82 Westheimer

Transit Center and Park \& Ride Connections

- Mission Bend P\&R, Addicks P\&R

Northbound Route:
Richmond \& S Richmond, L Green Crest, R Westpark, L Addicks Clodine, L Bellaire, L Tres Lagunas, L Sierra Blanca, R Alief Clodine, R Mission Bend P\&R, L Metro, R Alief Clodine, L Eldridge, L Memorial, R Hwy 6, R Park Row, R Addicks P\&R
Southbound Route:
Addicks P\&R, L Park Row, L Hwy 6, L Memorial, R Eldridge, R Alief Clodine, L Metro, R Mission Bend P\&R, L Metro, L Alief Clodine, L Sierra Blanca, R Tres Lagunas, R Bellaire, R Addicks Clodine, R Westpark, L Green Crest, R S Richmond, L Richmond Richmond \& S Richmond
Proposed Equipment:
-40' transit bus or 25' Arboc bus

Base headway includes weekday middays, weekends, and evenings. Span is consistent seven days a week.

Transit System Reimagining Going Places

75 Eldridge

Base Headway

$=10,12$, or 15 minutes
$=30$ minutes

- 30 minutes

60 minutes
$=$ Red Line = Green Line - Purple Line
(3) Transit Center
© Park \& Ride - Quickline Stop Quickline

Transit System Reimagining Going Places

82 Westheimer

Frequent Network

West Oaks Mall to Downtown:

Peak Headway	Base Headway	Span
8		0
Minutes	Minutes	Hours (approx.)

Activity Centers:

- Westchase, Uptown/Galleria, Midtown, Downtown

Rail Line Connections:

- Downtown (Red, Green, and Purple)

Frequent Network Connections:
27 Shepherd, 33 Post Oak, 40 Heights/Telephone/41 Kirby Polk, 46 Gessner, 51/52 Hardy, 54 Scott, 56 Airline/Montrose, 63 Fondren, 85 Antoine/Washington, 137 Northshore Flyer, 160s Memorial City Flyer
Transit Center and Park \& Ride Connections

- Downtown TC

Eastbound Route:
Richmond \& S Richmond, R Westheimer, S Elgin, LTravis, L Congress, Congress \& Smith
Westbound Route:
Congress \& Smith, R Franklin, R Milam, R Elgin, S Westheimer, L Addicks-Howell, R Richmond, Richmond \& S Richmond
Proposed Equipment:

- 60^{\prime} transit bus as fleet and street configuration allow or 40^{\prime} transit bus

Base headway includes weekday middays and weekends. Evening headway is 20 minutes. Span is consistent seven days a week.

82 Westheimer

Half Mile Access

Base Headway	
$=10,12$, or 15 minutes	Red Line
$=30$ minutes	Green Line
$=60$ minutes	Purple Line
$1+1$ Peak Only	- Rail Station

(6) Transit Center
© Park \& Ride

- Quickline Stop

151 Westpark Express

Weekday Peak Only

Mission Bend P\&R to Downtown:

Peak Headway	Base Headway	Span
5		$\mathbf{2 . 5} \mathbf{A M}$ $\mathbf{3 ~ P M}$
Minutes	Minutes	Hours (approx.)

Local stops, Mission Bend P\&R to Westchase P\&R.
Limited stops, Westchase P\&R to Hillcroff P\&R.
Express to Midtown and Downtown.
Additional peak frequency between Hillcroft P\&R and Downtown

Activity Centers:

- Westchase, Uptown/Galleria, Greenway Plaza, Midtown, Downtown Rail Line Connections:
- Downtown (Red, Green and Purple)

Frequent Network Connections:

- 2 Bellaire, 4 Beechnut, 40 Heights/Telephone/41 Kirby Polk, 46 Gessner, 51/52 Hardy, 54 Scott, 63 Fondren, 82 Westheimer, 152/153 Harwin Flyer, 137 Northshore Flyer, 160 s Memorial City Flyer
Transit Center and Park \& Ride Connections:
- Mission Bend P\&R, Westchase P\&R, Gessner P\&R, Hillcroff P\&R

Eastbound Route:
Eastbound Route
Gesser P\&R R W, LMetro, R Alief Clodine, S Harwin, Westchase TC, L Gessner, Ges7. Exit Westbound Route:

- Congress \& La Branch, L Smith, S Spur 527, S Southwest Fwy HOT or main lanes, Exit Hillcroft P\&R, L Westpark, Gessner P\&R, L Gessner, R Harwin, Westchase P\&R, S Alief Clodine, L Metro, R Mission Bend P\&R
Proposed Equipment:
- 45^{\prime} motorcoach or 40^{\prime} transit bus or 60^{\prime} articulated bus as fleet allows

Transit System Reimagining Going Places

151 Westpark Express
Half Mile Access

Base Headway

152 Harwin Flyer

Frequent Network
Westwood P\&R to Wheeler TC:

Peak Headway	Base Headway	Span
5	30	4
Minutes	Minutes	Hours (approx.)

Schedule coordinated with 153 Harwin Flyer to provide frequent service between Harwin \& Ranchester and Wheeler TC

Activity Centers:

- Westchase

Rail Line Connections:

- Wheeler Station (Red)

Frequent Network Connections:
2 Bellaire, 4 Beechnut, 25 Richmond, 46 Gessner, 63 Fondren, 65 Bissonnet, 82 Westheimer
Transit Center and Park \& Ride Connections

- Westchase P\&R, Hillcroff TC, Wheeler TC
astbound Route:
- Westwood P\&R, R Centre, L Bissonnet, R Woodfair, L Club Creek, R Beechnut, L

Corporate, R Bellaire, L Ranchester, R Harwin, Hillcroff P\&R, Southwest Fwy HOT or main lanes, Exit Richmond, Wheeler TC
Westbound Route

- Wheeler TC, L Richmond, L Spur 527, Southwest Fwy HOT or main lanes, Exit Hillcroft TC, R Harwin, L Ranchester, R Bellaire, L Corporate, R Beechnut, L Club Creek, R Woodfair, L Bissonnet, R Centre, L Westwood P\&R
Proposed Equipment:
- 40^{\prime} transit bus

Base headway includes weekday middays, weekends, and evenings. Span is consistent seven days a week.

Transit System Reimagining Going Places

152 Harwin Flyer

153 Harwin Flyer

Frequent Network
Briar Forest to Wheeler TC:

Peak Headway	Base Headway	Span
4	3	
Minutes	Minutes	Hours (approx.)

Schedule coordinated with 152 Harwin Flyer to provide frequent service between Harwin \& Ranchester and Wheeler TC

Rail Line Connections:

- Wheeler Station (Red)

Frequent Network Connections:

- 25 Richmond, 46 Gessner, 63 Fondren, 65 Bissonnet, 82 Westheimer

Transit Center and Park \& Ride Connections:

- Westwood P\&R, Hillcroff TC, Wheeler TC

Eastbound Route:
Scholarship \& Valedictorian, R Valedictorian, R Briar Forest, L Eldridge, R Parkway Plaza, R Enclave, R Westella, L Whittington, L Dairy Ashford, R Briar Forest, R City West, L Cityplace, R Rogerdale, L Westheimer, R Briarpark, S Ranchester, L Harwin, Hillcroft P\&R, Southwest Fwy HOT or main lanes, Exit Richmond, Wheeler TC Westbound Route:

- Wheeler TC, L Richmond, L Spur 527, Southwest Fwy HOT or main lanes, Exit

Hillcroft TC, R Harwin, R Ranchester, S Briarpark, L Westheimer, R Rogerdale, Cityplace, R City West, L Briar Forest, L Dairy Ashford, R Whittington, R Westella, L Enclave, L Parkway Plaza, L Eldridge, R Briar Forest, L Briar Home, R Scholarship, Scholarship \& Valedictorian

Proposed Equipment:

- 40^{\prime} transit bus

Transit System Reimagining Going Places

153 Harwin Flyer

© Transit Center
© Park \& Ride - Quickline Stop

Base headway includes weekday middays, weekends, and evenings. Span is consistent seven
days a week.

160 Memorial City Flyer

Frequent Network

Memorial City to Downtown:

Peak Headway	Base Headway	Span
40	5	8
Minutes	Minutes	Hours (approx.)

Frequent service between Memorial City and Downtown composed of 160, 161, and 162 .

Activity Centers:

- Memorial City, Uptown, Downtown

Rail Line Connections:

- Downtown (Red, Green and Purple)

Frequent Network Connections:
26 Long Point/Cavalcade, 33 Post Oak, 40 Heights/Telephone/41 Kirby Polk, 46 Gessner, 51/52 Hardy, 54 Scott, 82 Westheimer, 85 Antoine/Washington, 137 Northshore Flye
Transit Center and Park \& Ride Connections:

- Northwest TC, Downtown TC

Eastbound Route:
Memorial City \& Barryknoll, R Barryknoll, R Gessner, R Katy Freeway, enter managed lanes, exit Northwest TC, ramps to Katy Freeway, enter Katy Freeway HOV, L Franklin R Smith, L Pierce, L Downtown TC
Westbound Route:
Downtown TC, L St. Joseph, R Lovisiana, L Congress, L Franklin, R Katy Freeway HOV, S Katy Freeway, exit Northwest TC, L Old Katy, S Katy Freeway managed lanes, exit Gessner, L Gessner, R Kingsride, R Frostwood, R Katy Freeway frontage, R Memorial City, Memorial City \& Barrykno
Proposed Equipment:
60' transit bus as fleet allows or 40^{\prime} transit bus

Base headway includes weekday middays and weekends. Evening headway is 30 minutes. Span is consistent seven days a week.

Transit System Reimagining Going Places

160 Memorial City Flyer
Half Mile Access

161 Wilcrest Flyer

West Bellfort P\&R to Downtown:

Peak Headway	Base Headway	Span
20	30	-8
Minutes	Minutes	Hours (approx.)

Frequent service between Memorial City and Downtown composed of 160, 161, and 162 .

Activity Centers:

Me Cily Downtow
Frequent Network Connections:
2 Bellaire, 4 Beechnut, 25 Richmond, 26 Long Point/Cavalcade, 33 Post Oak, 40 Heights/Telephone/41 Kirby Polk, 46 Gessner, 51/52 Hardy, 54 Scott, 65 Bissonnet, 82 Westheimer, 85 Antoine/Washington, 137 Northshore Flyer
Transit Center and Park \& Ride Connections
-
Inbound Route:
W Bellfort P\&R, L Roark, R Bellfort, R Wilcrest, R Westpark, L Walnut Bend, L Westheimer, R Wilcrest, R Memorial, L Gessner, R Katy Freeway, enter managed lanes, exit Northwest TC, ramps to Kary Freeway, enter Katy Freeway HOV, L Franklin, R Smith, L Pierce, L Downtown TC
Outbound Route:
Downtown TC, L St. Joseph, R Lovisiana, L Congress, L Franklin, R Katy Freeway HOV, S Katy Freeway, Exit Northwest TC, L Old Katy, S Katy Freeway Managed Lanes, exit Gessner, L Gessner, R Memorial, LWilcrest, L Westheimer, R Walnut Bend, R Westpark, L Wilcrest, L Bellfort, L Roark, R W Bellfort P\&R
Proposed Equipment:

- 40^{\prime} transit bus

Base headway includes weekday middays, weekends, and evenings. Span is consistent seven days a week.

Transit System Reimagining Going Places

161 Wilcrest Flyer

162 Memorial Flyer

Addicks P\&R to Downtown:

Peak Headway	Base Headway	Span
20		6
Minutes	Minutes	Hours (approx.)

Potential for additional "West Belt" route if peak overloads occur.
Additional frequency between Wilcrest and Northwest TC provided by 161 Wilcrest Flyer Frequent service between Memorial City and Downtown composed of 160, 161, and 162.

Activity Centers:

- Energy Corridor, Memorial City, Downtown

Rail Line Connections:
Frequent Nown (Red, Green and Purple)
Frequent Network Connections:
26 Long Point/Cavalcade, 33 Post Oak, 46 Gessner, 51/52 Hardy, 54 Scott, 82 Westheimer, 85 Antoine/Washington, 137 Northshore Flyer
Transit Center and Park \& Ride Connections

- Addicks P\&R, Northwest TC, Downtown TC

Eastbound Route:
Addicks P\&R, LPark Row, L Hwy 6, L Katy Fwy frontage, R Addicks Howell, L Grisby, R Westlake Park, L Memorial, L Gessner, R Katy Fwy frontage, enter main lanes, enter Managed Lanes, Exit Northwest TC, ramps to Katy Fwy, enter Katy Fwy HOV lane, L Frankin, R Congress, R Smith, L Pierce, L Downtown TC

Westbound Route

Downtown TC, L St. Joseph, R Lovisiana, LCongress, L Franklin, R Katy Fwy HOV lane, S Katy Freeway, Exit Northwest TC, ramps to Katy Fwy Managed Lanes, exit Gessner, L Gessner, R Memorial, R Westlake Park, L Grisby, R Hwy 6, R Park Row, R
Addicks P\&R Addicks P\&R
Proposed Equipment:

- 40' transit bus or 45^{\prime} motorcoach

Base headway includes weekday middays, weekends, and evenings. Span is consistent seven days a week.

162 Memorial Flyer

Transit System Reimagining Going Places
402 Bellaire Quickline
Weekday Only
Ranchester to TMC TC:

Peak Headway	Base Headway	Span
40	5	3
Minutes	Minutes	Hours (approx.)

Route operates weekdays only. laire TC, Stella Link, Kirby, Greenbriar, TMC TC

Activity Centers:

- TMC

Rail Line Connections:

- TMC Transit Center Station (Red)

Frequent Network Connections:
4 Beechnut, 27 Shepherd, 33 Post Oak, 46 Gessner, 56 Airline/Montrose, 63 Fondren, 65 Bissonnet
Transit Center and Park \& Ride Connections

- Bellaire TC, TMC TC

Eastbound Route:
Clarewood \& Ranchester, R Ranchester, L Bellaire, Bellaire TC, S Holcombe, R Fannin, R TMC TC
Westbound Route
TMC TC, R Pressler, L Holcombe, S Bellaire, Bellaire TC, S Bellaire, R Corporate, R
Clarewood, Clarewood \& Ranchester

Proposed Equipment

- 40 ' transit bus

APPENDIX E METRO MARKET AND DEVELOPMENT DENSITY INDEX METHODOLOGY

The following is a detailed description of the Market and Development Density Index Methodology. The index was created for the Metropolitan Transit Authority of Harris County (METRO) as part of the System Reimagining Initiative. The index is part of the METRO Transit System Existing Conditions Report completed in 2013 (Available at URL)

Some content has been abridged for relevance. Table, figure, and footnote numbers have been changed for consistency with this report.

INDEX METHODOLOGY

The Market and Development Density Index is based on the insight that higher density development can occur as the market responds to firm and household desires to locate in areas with good transit mobility. The goal of the index is to help METRO identify areas of high development potential where bus service can add to the value of the location and potentially stimulate new development.

The index identifies areas of potential demand for both commercial and residential development in the near-to-mid term (0 to five years). Longer term potential for TOD will depend more heavily on public policy decisions and the level of investment in specific areas. The index is comprised of five components representing demographic and market factors that influence TOD potential. These indicators are defined briefly below, and described in more detail in the next section of this chapter.

- Population Density is measured as the number of people per square mile in a given block group.
- Change in Population Density measures the difference in block group population density between 2000 and 2010.
- Transit-Supportive Employment Density is measured as the number of transit-supportive jobs per square mile. The definition of transit-supportive employment is based on prior research conducted by the Center for Transit-Oriented Development and includes the knowledge-based, education, health care, entertainment and government sectors. To account for the effect of proximity to employment in adjacent neighborhoods, block-level employment is generalized to include a portion of surrounding employment within a mile.
- Change in Employment Density measures the difference in employment density between 2002 and 2010.
- Assessed Property Value Density is calculated by adding the land and structure values for all residential and commercial properties in a given block group, and then dividing the total value by the block group area.

Each indicator is assigned a weight reflecting its relative impact on the total index score. The five indicators, associated weights and data sources are summarized in Table E-1. The specific steps involved in constructing the Market and Development Density Index were as follows:

1. Population, employment and property value data was compiled at the census block group level.
2. To address wide variations in data values, each data set was processed to create a more evenly distributed, compressed set of values. ${ }^{1}$
3. Each data set was scaled so that all values fall between 0 and 1 , with the lowest data point set to 0 and the highest data point set to 1 .
4. Each data set was multiplied by the indicator weight.
5. The index score for each block group was calculated by summing the scaled, weighted indicators

The index is intended to evaluate relative market strength at the regional level and does not include the full range of factors that impact TOD potential, particularly factors that influence the walkability and bikeability of the neighborhood, access to retail or services, and other important components of a successful transit-oriented development. A future revision of the index may include an indicator of the built environment, such as intersection density. Input from local developers will also enable the index to be interpreted and applied in a way that acknowledges more nuanced, qualitative factors.

- In all of the raw data sets, the standard deviation was equal or greater than the mean, indicating askewed istribution. Hi oher worrs, a feew block groups have much higher orlower values hian he majorty of block

INDEX COMPONENTS

The following section describes each of the indicators in greater depth, including the rationale for incorporating each component into the overall index, and the main findings for each indicator.
TABLEE E-1:SUMMARY OF MARKET AND DEVELOPMENT
DENSITY INDEX COMPONENTS

POPULATION DENSITY

High population density suggests current and historic market strength for compact and multifamily housing. Higher density places may also be more willing to accept additional density in comparison with lowerdensity, single family neighborhoods.

POPULATION DENSITY CHANGE

In order to understand where recent population growth has taken place, the change in population density between 2000 and 2010 was calculated.

TRANSIT-SUPPORTIVE EMPLOYMENT DENSITY

Proximity to employment centers is one of the most important factors influencing development around transit. ${ }^{2}$ Households consider access to jobs when making residential location decisions, while businesses consider the commute trips of their workforce, and are attracted to existing employment clusters for the benefits that come from clustering. Due to the importance of employment centers and the agglomeration effect, employment-related factors are given the greatest combined weight out of all the index components

Given the importance of employment centers as destinations for transit trips, major employment centers were identified in the Service Area1. These employment centers are listed in Table E-2.

More so than population density, employment is clustered in the CBD and to the west of the CBD. Almost all regional employment centers are located in this portion of the Service Area

CHANGE IN EMPLOYMENT DENSITY GROWTH

In order to understand where recent employment growth has taken place, the change in employment density between 2002 and 2010 was calculated

TABLE E-2 SUMMARY OF METRO SERVICE AREA EMPLOYMENT				
Employment Center	$\begin{aligned} & \text { Total } \\ & \text { Jobs } \end{aligned}$	TOD Supportive Jobs	TOD Job Density (Jobs per SqMi)	Percent TOD Supportive Jobs
Downtown	151,500	95,000	53,700	63\%
Texas Medical Center/ Rice University	80,600	78,600	36,800	98\%
Greenway	79,000	64,800	59,100	82\%
Westchase	51,500	31,800	6,800	62\%
Uptown/Galleria	53,700	31,200	30,600	58\%
NASA/Clear Lake	29,200	23,800	3,300	82\%
Energy Corridor	30,800	19,900	5,400	65\%
Memorial City/ Town \& Country	21,300	17,700	10,900	83\%
University of Houston/Texas Southern University	15,700	15,600	17,800	99\%
Sharpstown	16,300	12,000	8,800	74\%
Midtown	19,400	11,900	12,800	61\%
Augusta/Fountain View	15,800	10,800	10,200	68\%
Greenspoint	21,900	10,300	7,500	47\%
Post Oak - East of 610	15,000	10,200	18,500	68\%

ASSESSED PROPERTY VALUE DENSITY

Assessed property values reflect the value of land, residentia development and commercial development throughout the Service Area Areas with strong real estate markets are likely to have higher land and building values, as well as higher density development, all of which will contribute to higher property values within a given area. Thus, this indicator reflects existing and historic market strength in a given location.

APPENDIX F EXISTING AND FUTURE TRAFFIC VOLUMES

\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline \multicolumn{2}{|r|}{ROADWAY} \& \multicolumn{6}{|c|}{ExIsting} \& \multicolumn{11}{|c|}{FUTURE} \\
\hline Street \& Segment \& Classification \& Lanes \& Wath \& at range \& ADt (High) \& Lane Demand \& Estimated 2040 ADT
Range \& \[
\begin{gathered}
\text { Estimated } 2040 \text { ADT } \\
\text { (High) }
\end{gathered}
\] \& \[
\begin{aligned}
\& \text { Future Lane } \\
\& \text { Demand }
\end{aligned}
\] \& Lane Availability Based
on ROW \& \[
\begin{aligned}
\& \text { Lane Demand Not } \\
\& \text { Met }
\end{aligned}
\] \& Venicie Demand Not Met \& Daily Vehicle \& Daily Vehicle Passengers \& \[
\begin{aligned}
\& \text { Lane Demand Not } \\
\& \text { Met }
\end{aligned}
\] \& Vehicle Demand not
Met \& Daily Vehicle
Passengers not Met \\
\hline \multirow{4}{*}{Alietcodidine} \& Beleakto kitwood \& T \& 4 \& 80 \& 30,500 \& 30,500 \& 4.1 \& 37,000 \& 37,000 \& 4.9 \& 4 \& 0.9 \& 6,750 \& 46,250 \& 8,438 \& 0.9 \& 6,750 \& 8.438 \\
\hline \& \& T \& 4 \& 80 \& 20,000-39,000 \& 39,000 \& 5.2 \& 30,50.50,000 \& 50,000 \& 6.7 \& 4 \& 2.7 \& 20,50 \& 62,500 \& 25,313 \& 2.7 \& 20,50 \& 25,313 \\
\hline \& Daivastior it smot \& T \& 4 \& 80 \& 24,000-25000 \& 25,000 \& 3.3 \& 34,000-34,500 \& 34,500 \& 4.6 \& 4 \& 0.6 \& 4,500 \& 43,125 \& 5.625 \& 0.6 \& 4.500 \& 5,625 \\
\hline \& symatiow. Ciy Limt \& T \& 4 \& 80 \& 11,000-27,000 \& 27,000 \& 3.6 \& 23,000-36,000 \& 36,000 \& 4.8 \& 4 \& 0.8 \& 6,000 \& 45,00 \& 7,500 \& 0.8 \& 6,000 \& 7,500 \\
\hline \multirow[t]{2}{*}{Bare-colotine} \& N. Cyylum towestemer Pky. \& T \& 4 \& 100 \& \& \& \& \& \& \& 4 \& \& \& \& \& \& \& \\
\hline \& Sthemer Pew. tow westemer \& T \& 4 \& 100 \& \& \& \& \& \& \& 4 \& \& \& \& \& \& \& \\
\hline \multirow{3}{*}{Barce-c.pypess} \& Kay fw. © Parar Row \& T \& 6 \& 100 \& 22,000 \& 22,000 \& 2.9 \& 26,500 \& 26,500 \& 3.5 \& 6 \& -2.5 \& -18,750 \& 33,125 \& -23,438 \& -2.5 \& -18,750 \& -23,438 \\
\hline \& Pak Row losams \& T \& 4 \& 100 \& 28,000 \& 28,000 \& 3.7 \& 33,500 \& 33,500 \& 4.5 \& 6 \& -1.5 \& -11,250 \& 41.875 \& -14,063 \& 0.5 \& 3,750 \& 4,688 \\
\hline \& Saums on Covivimit \& T \& 4 \& 100 \& 29,500 \& 29,500 \& 3.9 \& 35,500 \& 35.500 \& 4.7 \& 6 \& -1.3 \& -9,750 \& 44,375 \& -12,188 \& 0.7 \& 5,250 \& 6,563 \\
\hline \multirow[t]{2}{*}{Bankuoll} \& Cessmer to sumer Hill \& m \& 4 \& 60 \& \& \& \& \& \& \& 4 \& \& \& \& \& \& \& \\
\hline \& Fonden los. Cosesmer \& P \& 8 \& 135 \& 57,00-58,000 \& 58,000 \& 7.7 \& 90,50.98,000 \& 98,000 \& 13.1 \& 8 \& 5.1 \& 38,250 \& 122,500 \& 47,813 \& 5.1 \& 38,250 \& 47,813 \\
\hline \multirow{8}{*}{Bellife} \& S. Cessserat Peancosester \& P \& 8 \& 150 \& 51,000 \& 51,000 \& 6.8 \& 90,000 \& 90,000 \& 12.0 \& 8 \& 4 \& 30,000 \& 112,500 \& 37,500 \& 4.0 \& 30,000 \& 37,500 \\
\hline \& Rancheseser to West Bat \& P \& 8 \& 130 \& 50,000 \& 50,000 \& 6.7 \& 98,000 \& 98,000 \& 13.1 \& 8 \& 5.1 \& 38,250 \& 122,500 \& 47,813 \& 5.1 \& 38,250 \& 47,813 \\
\hline \& West eitlo Wiresest \& P \& 6 \& \({ }_{120}^{120}\) \& 41,000.54,000 \& 54,000 \& 7.2 \& \({ }^{61,000-79,000}\) \& 79,000
56500 \& \begin{tabular}{l}
10.5 \\
7 \\
\hline
\end{tabular} \& 8 \& 2.5 \& 18,750 \& 98,50 \& 23,438 \& 4.5 \& 33,50
11250 \& \({ }^{42,188}\) \\
\hline \& Wicest okitwood \& P \& 6 \& 120 \& 34,000-43,000 \& 43,000 \& 5.7 \& 50,00-56,500 \& 56,500 \& 7.5 \& 8 \& -0.5 \& -3,750 \& 70,625 \& -4,688 \& 1.5 \& 11,250 \& 14,063 \\
\hline \& Kitsood lo Cook \& P \& 6 \& 120 \& 35,500 \& 35,500 \& 4.7 \& 47,500 \& 47,500 \& \({ }_{6} .3\) \& 8 \& -1.7 \& -12,750 \& 59,375 \& -15,938 \& 0.3 \& 2,250 \& 2,813 \\
\hline \& Cook O DiandAstiocd \& P \& 6 \& 120 \& 30,500 \& 30,500 \& 4.1 \& 40,500 \& 40,500 \& 5.4 \& 8 \& -2.6 \& -19,500 \& 50,625 \& -24,375 \& -0.6 \& -4,500 \& -5,625 \\
\hline \& Dairs-Astrocr i s symot \& P \& 6 \& 120 \& 34,000-39,500 \& 39,500 \& 5.3 \& 49,50-53,500 \& 53,500 \& 7.1 \& 8 \& -0.9 \& -6,750 \& \({ }^{66,875}\) \& -8,438 \& 1.1 \& 8,250 \& 10,313 \\
\hline \& spmot ow. Cily Limit \& P \& 6 \& 120 \& 33,500 \& 33.500 \& 4.5 \& 45,500 \& 45,500 \& 6.1 \& 8 \& -1.9 \& -14,250 \& 56.875 \& -17,813 \& 0.1 \& 750 \& 937 \\
\hline \multirow{5}{*}{Blook} \& Kay Fw. toweswew \& T \& 4 \& 100 \& 26,000 \& 26,000 \& 3.5 \& 31,500 \& 31,500 \& 4.2 \& 6 \& -1.8 \& -13,500 \& 39,375 \& -16,875 \& 0.2 \& 1,500 \& 1.875 \\
\hline \& Wessuev ot olon Pont \& T \& 4 \& 100 \& 22,500 \& 22,500 \& 3.0 \& 26,000 \& 26,000 \& 3.5 \& 6 \& -2.5 \& -18,750 \& 32,500 \& -23,438 \& -0.5 \& -3,750 \& -4,688 \\
\hline \& \& T \& 4 \& 100 \& 21.5002.2500 \& \(\begin{array}{r}22,500 \\ 1.500 \\ \hline\end{array}\) \& 3.0 \& 250,00288000 \& \({ }^{28,000}\) \& \({ }^{37}\) \& \({ }_{6}\) \& \({ }^{23}\) \& -17250 \& 35000

25000 \& -21,563 \& ${ }^{-0.3}$ \& $\begin{array}{r}\text {-2,30 } \\ -250 \\ \hline 0\end{array}$ \& ${ }_{2}^{2813}$

\hline \& Hammerly to Kempwood \& T \& 4 \& 100 \& 18.5500 \& 16.500 \& 2.2 \& 20.000 \& 20.00 \& 2.7 \& 6 \& ${ }^{3.3}$ \& 24,50 \& 25.00 \& ${ }^{-3,9988}$ \& ${ }^{1.3}$ \& -9,750 \& - $\begin{array}{r}\text {-12,188 } \\ -10313 \\ \hline\end{array}$

\hline \& Kemmeothaly Pa \& T \& 4 \& 100 \& \& 17,500
19.500 \& 2.3
26 \& \& 21,500
24.500 \& 29
3 \& 6 \& 3.1
.27 \& 22350
.20250 \& 26.875
30.625 \& ${ }_{\text {-20033 }}$ \& $\stackrel{-1.1}{-.7}$ \& \& ${ }_{-0}^{-10.538}$

\hline \multirow[t]{3}{*}{} \& Ealiere svo of tawn \& m \& 4 \& 80 \& \& \& \& \& \& \& 4 \& \& \& \& \& \& \&

\hline \& Hewe towestemer \& m \& 4 \& 80 \& 23,5002.8,500 \& 28.500 \& ${ }^{3} 8$ \& 4,5,50,54,000 \& 54,00 \& 7.2 \& 4 \& 3.2 \& 24,000 \& 67,500 \& 30.00 \& 3.2 \& 24,000 \& 30,00

\hline \& Nenorial cosesser \& T \& 4 \& 100 \& 34,00040,000 \& 40,00 \& ${ }_{5} 5$ \& 499000.53,500 \& ${ }^{53,500}$ \& 7.1 \& 6 \& 1.1 \& 8.250 \& 6.8875 \& 10,313 \& 3.1 \& 23,35 \& ${ }^{29,063}$

\hline \multirow{7}{*}{Briar Foest} \& Cosseret Wesestert \& T \& 4 \& 100 \& 33,5003.35.500 \& 35.50 \& 4.7 \& 4 4,00044,500 \& 44.500 \& 5.9 \& 6 \& 0.1 \& -750 \& ${ }_{56,265}$ \& -937 \& 1.9 \& 14.250 \& 17,813

\hline \& Westelt wicest \& T \& 4 \& 100 \& 33,0003,9000 \& 39,00 \& 52 \& 4,400047,000 \& 47,000 \& ${ }_{6} 3$ \& 6 \& 0.3 \& 2250 \& 58,70 \& 2.813 \& 23 \& 17,50 \& 2,563

\hline \& Weastokitwood \& T \& 4 \& 100 \& 3,450-37,500 \& 37,500 \& 5.0 \& 44,00046,000 \& 46,000 \& ${ }_{6} 6$ \& 6 \& 0.1 \& ${ }^{750}$ \& 57,500 \& ${ }^{937}$ \& 2.1 \& 15,550 \& 19.688

\hline \& Kimeoot odivinatiod \& T \& 4 \& 100 \& 29,0003,1.500 \& 31,500 \& 42 \& 37,0004,4,000 \& 44.000 \& 5.9 \& 6 \& 0.1 \& -750 \& 55,00 \& -937 \& 1.9 \& 14,250 \& 17,813

\hline \& DaimAstioctiodedides \& T \& 4 \& 100 \& 22,5002-29500 \& 29.500 \& 3.9 \& 37,50040,500 \& 40,500 \& 54 \& 6 \& -0.6 \& 4.500 \& ${ }_{50,225}$ \& -5.625 \& 1.4 \& 10.500 \& ${ }^{13,125}$

\hline \& Eatidge of Patwey Plara \& T \& 4 \& 100 \& 33,00 \& 33,00 \& 4.4 \& 44,000 \& 44.00 \& 5.9 \& 6 \& 0.1 \& -750 \& 55.00 \& . 937 \& 1.9 \& 14.50 \& 17,813

\hline \& Patay Plaza iost \& T \& 4 \& ${ }_{80}^{100}$ \& 20.000 \& | 20.000 |
| :--- |
| 2450 | \& ${ }^{27}$ \& ${ }^{31,000}$ \& 31.00 \& ${ }_{1}^{4.1}$ \& 4 \& $\stackrel{-1.9}{85}$ \& -14,250 \& \& -17,813 \& 0.1

85 \& ${ }_{\substack{750 \\ 6350}}$ \& ${ }_{\text {c }} 937$

\hline \multirow{4}{*}{Bitimoore} \& Key Fw, bwesver \& T \& 4 \& ${ }_{80}^{80}$ \& ${ }_{2}^{24,500}$ \& ${ }^{24,000}$ \& $\begin{array}{r}27 \\ 2.7 \\ \hline\end{array}$ \& ${ }^{93,500}$ \& ${ }^{93,500}$ \& 12.8
6.8 \& 4 \& ${ }_{2} 8$ \& 21,000 \& ${ }^{16,3750}$ \& 20.250 \& ${ }_{28} 8$ \& 2,000 \& 79.688
26,50

\hline \& Henmely b Kenpuod \& T \& 4 \& ${ }^{80}$ \& 16,000 \& 16,000 \& 2.1 \& 37,500 \& 37,500 \& 5.0 \& 4 \& 1 \& 7.500 \& 46.875 \& ${ }^{\text {9,375 }}$ \& 1.0 \& 7.500 \& ${ }^{\text {9,725 }}$

\hline \& \& T \& 4 \& 80 \& 20,00 \& 20.00 \& 2.7 \& 47,500 \& 47,500 \& ${ }_{6} .3$ \& 4 \& ${ }^{2} 3$ \& 17.250 \& 59.375 \& 2.5153 \& 23 \& 17.250 \& 21.563

\hline \& Ciay fi. on. Civimimit \& T \& 4 \& 80 \& 27,500 \& 27,500 \& 3.7 \& 39.500 \& 39,500 \& ${ }_{5} 5$ \& 4 \& 1.3 \& 9,750 \& 49,375 \& 12,188 \& 1.3 \& 9,550 \& 12,188

\hline \multirow[b]{3}{*}{simeer till} \& NLTue Yokt temensear \& T \& 4 \& 80 \& 31,5003.35,00 \& 35000 \& 4.7 \& 47,50048,500 \& 48.500 \& ${ }_{6} .5$ \& 4 \& 2.5 \& 18,50 \& 60,625 \& 23.488 \& 2.5 \& 18,50 \& 23.388

\hline \& Kay wew blowesuav \& m \& 4 \& 70 \& 17,500 \& 17.550 \& ${ }^{2} 3$ \& 21.500 \& 21.500 \& 2.9 \& 4 \& ${ }^{1.1}$ \& -8,50 \& 28.875 \& -10,313 \& ${ }^{-1.1}$ \& -8,20 \& -10,313

\hline \& Wessievololop Poin \& mu \& 4 \& ${ }_{70} 70$ \& | 19,500 |
| :--- |
| $\begin{array}{l}2,500\end{array}$ |
| 1 | \& | 19,500 |
| :--- |
| $\begin{array}{l}1,500\end{array}$ |
| 1 | \& 26

29 \& \begin{tabular}{l}
26,500

24500

\hline

 \&

26,500

24500

\hline

 \&

3.5

3

\hline
\end{tabular} \& 4 \& 0.5

-07 \& | 3.750 |
| :--- |
| .5520 | \& 33,25

3.205

3 \& -4.688 \& -0.5 \& | 3,750 |
| :--- |
| .5520 | \& -4.688

\hline \multirow{5}{*}{Campeal} \& Baloxt ohammely \& m \& 4 \& ${ }_{70}$ \& ${ }^{2,1,500}$ \& ${ }_{\text {2, }}^{1,5000}$ \& ${ }_{2}^{29}$ \& ${ }_{4}^{24,2000}$ \& ${ }_{42,500}^{24500}$ \& | 3.3 |
| :--- |
| 5.6 | \& 4 \& | 0.0 |
| :--- |
| 1.6 | \& | 5.250 |
| :--- |
| 12.200 |
| 1 | \& ${ }_{\substack{30,25 \\ 52500}}$ \& \& 0.7

1.6 \& \begin{tabular}{l}
-5,200

12000

\hline

 \&

-.6.53)

15000

\hline
\end{tabular}

\hline \& mameituemor \& m \& 4 \& 70 \& 14,000 \& 14.000 \& 1.9 \& 20,00 \& 20.000 \& ${ }^{2} 7$ \& 4 \& ${ }^{-1.3}$ \& -9,50 \& 25.000 \& -12,188 \& ${ }^{-1.3}$ \& -9,750 \& -12,188

\hline \& Empar ionempood \& m \& 4 \& 70 \& 12,000 \& 12.000 \& 1.6 \& 18.000 \& 18,000 \& 24 \& 4 \& 1.6 \& 12,00 \& 22.500 \& -15,000 \& 1.6 \& 12,00 \& -15,00

\hline \& Kenmod local Red \& ms \& 4 \& 70 \& 16,000 \& 16,00 \& ${ }^{2} 1$ \& 19,000 \& 19,000 \& 25 \& 4 \& 1.5 \& -11,250 \& 23,50 \& -14,03 \& 1.5 \& -11,250 \& -14,03

\hline \& Clav Rad. Tamer \& ms \& 4 \& 70 \& 13,000-4,4,00 \& 14,000 \& 1.9 \& 17,000-18,000 \& 18.00 \& 24 \& 4 \& ${ }^{1.6}$ \& -12,00 \& 22.500 \& -15,00 \& ${ }^{1.6}$ \& -12,00 \& -15,00

\hline \multirow[b]{4}{*}{cay} \& tennstaxas locanvelal \& P \& 6 \& 100 \& 27,5003,5,500 \& 35.500 \& 4.7 \& 38,00044,500 \& 46.500 \& 6.2 \& - \& 0.2 \& 1.500 \& 58.125 \& 1.875 \& 0.2 \& 1.500 \& 1.875

\hline \& Campelth Cesserse Rd. \& p \& 6 \& 100 \& 32,00038,000 \& 38,00 \& 5.1 \& 42000:50,500 \& 50,500 \& 6.7 \& 6 \& 0.7 \& 5.250 \& ${ }^{63,125}$ \& 6.563 \& 0.7 \& 5.250 \& 6.563

\hline \& \& P \& 6 \& 100 \& 30,000.34,000 \& 34.000
35000 \& 4.5 \& 38,500.50,000 \& 50.000 \& ${ }^{6.7}$ \& 6 \& 0.7 \& 5.250 \& ${ }^{62500}$ \& 6,563 \& 0.7 \& 5.250 \& 6.563

\hline \& \& P \& ${ }_{6}^{6}$ \& 100
100 \& ${ }_{\text {2850003 }}{ }^{351000}$ \& 35000
31000 \& ${ }_{4.7}^{4.7}$ \& ${ }_{\text {chen }}^{\text {4,0000 }}$ \& 44.000
44000 \& 59

59 \& ${ }_{6}^{6}$ \& | -0.1 |
| :--- |
| 0.1 | \& - 7.750 \& 55.000

55000 \& $\stackrel{.937}{.937}$ \& | -0.1 |
| :--- |
| 0.1 | \& $\begin{array}{r}\text { - } 750 \\ .750 \\ \hline\end{array}$ \& $\stackrel{.937}{\text {-.937 }}$

\hline \multirow{3}{*}{Cook} \& Pher Foestlo Ouvensison \& - \& 6 \& 100 \& 24.500 \& 24.500 \& ${ }^{3} 3$ \& ${ }_{33,500}$ \& ${ }_{33,500}$ \& ${ }_{4.5}$ \& 6 \& ${ }^{-1.5}$ \& ${ }^{11,250}$ \& 41.875 \& 140,03 \& ${ }^{-1.5}$ \& ${ }^{11,250}$ \& 14,003

\hline \& \& ms \& 4 \& 100 \& 22.00 \& 22.00 \& 29 \& 29.500 \& 2.550 \& 3.9 \& 6 \& 2.1 \& -15,750 \& 38.875 \& -19,688 \& 0.1 \& -750 \& .938

\hline \& Elicicato keyFw \& T \& 4 \& 100 \& \& \& \& \& \& \& 6 \& \& \& \& \& \& \&

\hline \multirow{6}{*}{Daiva Afitod} \& Kave ww bowenoial \& T \& 6 \& 100 \& 39,50.54,000 \& 54.00 \& 7.2 \& 59,000778,000 \& 78.00 \& 10.4 \& 6 \& 4.4 \& 33.00 \& 97.500 \& 41.250 \& 4.4 \& 33.00 \& 41.250

\hline \& Nemorial b biarafoest \& T \& 6 \& 100 \& 42,00.5.2.000 \& 52000 \& 6.9 \& 67,00085,000 \& 85.00 \& 11.3 \& 6 \& ${ }_{5} 5$ \& 39,50 \& 106,250 \& 49.988 \& 5.3 \& 39,50 \& 49.888

\hline \& Biar Foestiowewtemer \& T \& 6 \& 100 \& 33,000-3,9000 \& 39,000 \& 5.2 \& 43,50046,500 \& 46.500 \& ${ }^{6} 2$ \& 6 \& 0.2 \& 1.500 \& 58.125 \& 1.875 \& 0.2 \& 1.500 \& ${ }_{1}^{1.875}$

\hline \& \& T \& ${ }^{6}$ \& 100
100 \& 29,000
40,000 \& 20,000
40,000 \& 3.9
5.3 \& 37,500
47,000 \& 37,500
47,000 \& 5.0
6.3 \& ${ }_{6}$ \& ${ }_{0}^{-1}$ \& -7,500
2.250 \& ${ }_{\substack{46,75 \\ 58,50}}$ \& -9,35
2,813 \& -1.0
0.3 \& -7,500 \& ${ }_{\text {- }}^{\text {- } 2,735}$

\hline \& Westakk 0 Alicticadine \& T \& 6 \& 100 \& 34,0003,3,000 \& 33,00 \& 4.4 \& 42,50043,000 \& 43,000 \& ${ }_{5} .7$ \& 6 \& ${ }^{0.3}$ \& -2,250 \& ${ }_{53,50}$ \& -2813 \& ${ }^{0.3}$ \& 2.250 \& -2813

\hline \& Nifetcodeneo osalife \& T \& 4 \& 100 \& 250002.25,500 \& 25.500 \& 3.4 \& 3,5,003,5,500 \& 37,500 \& 5.0 \& 6 \& -1 \& -7.500 \& 4.8 .75 \& -9,375 \& 1.0 \& 7,500 \& 9,375

\hline
\end{tabular}

hwouston

ROADWAY		OPPortunities				Percent Personsin Other Modes***	Percent Persons in Other Modes	CONCLUSION	COMMENTS
Stret	Segm	Bike	Ped	Transit	Increase Number of Lanes				
Alisiclodine	Beleakik okitimood					18\%	18\%	Area of Concem	Accuire ROW?
						41\%	41\%		
	Daindistioct osmot					13\%	13\%		
	smatit w. Civ Limit					17\%	17\%		
Barecratome	Westremer Pewy iowestemer					.	.		
Baracecopreses	Katy Fwy. to Park Row Park Row to Saums	?	?	?	\times	-71\%	-71\%	Widen	Widen for cas, tansitor bikeleded?
	Sams on coy	?	?	$?$	${ }^{x}$	-27\%	15\%		
Bandmoll	Cassere 0 bincer Hill	?	?						
Bellite	Fonden 0 S Cossmer		\times	DL?		39\%	39\%	Area of Concem	
	S. Cassere to Renctiester		x	${ }^{\text {DL? }}$		33\%	33\%		Nor rom tow widen
	Ranchesest owest Eetit		\times	DL?		39\%	39\%		High hic even if widened
	West Betlo Wicest		x	$\mathrm{DL}^{\text {2 }}$	x	24\%	43\%	Widen	
			\times	DL?	\times	.7\%	20\%		
	Kithood tocosk		\times	DL?	\times	.27\%	5\%		Add dedicieded tansit lane?
	Cookt Daindestiod		\times	DL?	\times	-48\%	-11\%		
	Dind.Astord tosmot		\times	DL?	\times	-13\%	15\%		
	smotit w. Civy Limit		\times	DL?	\times	-31\%	2\%		
Baloxk	Kay Fw. Loweswew	$?$?		x	-43\%	5\%	Possible Opoorunity for Pedibicycte	Widen for bikeped
	Nestrew $0^{\text {cong Poin }}$?	?		\times	-72\%	-14\%		
	Lompent thanneit	?	?		\times	- 6.62%	- 8 \%		
		?	?		\times	-108\%	.38\%		
	Cay Reltotensead	?	?		\times	${ }^{83 \%}$.21\%		
Sters	Belimematatamin	?	?			.			High vc: no RoW avalable
						44\%\%	44\%\%	Area i Concem	
	Memorial to Gessner				$\stackrel{\times}{\times}$	15\%	${ }_{\text {32\% }}^{43 \%}$		
	Weat Bat oweer				${ }^{\times}$	5\%	37%		High hc even if widened
	Weseat K itamad				\times	2\%	34\%		
Brar Foest					\times	2\%	32\%		
	Dairy-Ashford to Eldridge				\times	-11\%	20\%		
					-	46\%	${ }^{32 \%}$		
	keyprow oweswen					68\%	68\%		
	Weswevo bemmely					41\%	41\%		High Vc; no ROW
8itimowe	Hammerly to Kempwood					20\%\%	20\%		
	Cape on ay mit					25\%	25\%		
	Vime vorus tensplead					${ }_{39 \%}$	${ }^{39 \%}$		
smmer Hill	Kay Fw. Loweswem					.38\%	.38\%	Leave As is	
	Westevoloco peort					- 214%	${ }^{-14 \%}$		
Canpoeal		mode?	mode?	model	moder	29\%	29\%		
	Hameedy 0 Emod					49%	49\%		
	Empor bempued					67\%\%	. 67%		
	Kempwood to Clay Rd Clay Rd. to Tanner						. 5 . 67%		
Cay						3\%	3\%	Area of Concem	
	Candeall 0 cassara fad					10\%	10\%		
	Gessner Rd. to Brittmoore					- 11%	- 11%		High Vc; no ROW
						2\%	-2\%		
	Pen foesto Omenston					.34\%	. 34%		
${ }^{\text {cook }}$		$?$	$?$		\times	53\%	.3\%	Widen	Possible bikepeded
	Eldridge to Katy Fwy.			2		$4{ }^{2} 26$	$42{ }^{2}$	Area of Coneem	
	Nemomiosiaraees			$?$		47%	47\%		
	Biaf Foasto westemer			$?$		3\%	3\%		Replace evicicle lane w/ transi?
Dana Astiod	Westremento Bicimond			$?$		20\%	20\%		
	Richmond to Westpark Nestpark to Alief-Clodine			?		5\%	5\%		
	Anticamem obate		\times	?		-20\%	20\%	Widen	

Lane Demand based on 7,50 verlinanelday
For Rows s greater than 100 , assumed maximum number of lanes as 10

 Average evidide ocuranary assumed to be 1.25 personsseneicide
"Assumes al unmet pesson demand is in other modes

	Roadway	ExIsting						FUTURE										
Street	Segmat	Classifiction	Lanes	Widh	adt range	ADt (High)	Lane Demand	Estimated 2040 ADT Range Range	$\begin{gathered} \text { Estimated } 2040 \text { ADT } \\ \text { (High) } \end{gathered}$	$\begin{aligned} & \text { Future Lane } \\ & \text { Demand } \end{aligned}$	Lane Availability Based on ROW	$\begin{aligned} & \text { Lane Demand Not } \\ & \text { Met } \end{aligned}$	Venicie Demand Not Met	Daily Vehicle	Daily Vehicle Passengers Not Met	Lane Demand Not Met	$\begin{aligned} & \text { Vehicle Demand not } \\ & \text { Met } \end{aligned}$	$\begin{gathered} \text { Daily Vehicle } \\ \text { Passengers not Met } \end{gathered}$
Elaridge	N. Ciylmimioay Pd	P	6	100	23,50036,000	36,00	48	29,50042,200	42000	5.6	6	${ }^{0.4}$	3.000	52500	-3,50	0.4	3.000	-3,50
	Caypd. okay fw.	P	6	200	34,00:36,000	36,00	4.8	4,0.00043,000	43.000	5.7	10	4.3	32250	53,750	40.313	${ }^{0.3}$	2230	-2813
	Kay Fw. - wemenoil	P	6	100	55.00	55,00	7.3	${ }^{68,500}$	${ }^{68,500}$	9.1	6	3.1	23,50	${ }^{85,525}$	20.03	3.1	23.50	20.03
		P	6	110	39,500	39,500	5_{5}	49.00	49.00	6.5	6	0.5	3,750	61.20	4,688	0.5	3,750	4,688
	Surab Bay bu bia foest	P	6	100	31,504, 1,50	41.500	5.5	4.3.000.50,50	50,50	6.7	6	0.7	5.250	63.125	6.563	0.7	5.250	6.563
	Biaia foest Westhemer	P	6	100	34,500	34.500	4.6	43.500	43.550	58	6	-0.2	-1.500	54,375	-1.875	0.2	-1,500	-1,875
	civ Limito Aliticadide	P	6	120	29,0003,1,500	31,500	4.2	4.550443,000	43.00	5.7	8	2.3	-17,50	53,70	-21,56	0.3	2.250	-2.813
Endave	Eatiose e biat Foust	m	4	90							4							
Fonden	Henssead oww Fiw.	T	4	100	17,502:7,500	27,500	${ }^{3} 7$	19,000323200	32000	4.3	6	${ }^{1.7}$	12,750	40.00	-15,938	0.3	2.250	2.813
	Pney Pont owesthener	T	4	100	22000	22000	2.9	27,50	27,500	3.7	6	23	-17,20	34.375	${ }^{21,563}$	${ }^{0.3}$	-2.250	-2813
	Westremert orcimond	T	6	100	45,00045,500	45.500	${ }_{6}^{6.1}$	${ }^{64,0006565500}$	${ }^{655500}$	${ }^{8.7}$	6	27	${ }^{20,250}$	${ }^{81,875}$	${ }^{25,313}$	${ }^{27}$	20,550	25,913
	Richmond to Westpark	T	6	100	4,500.5.0.000 3900.5600	50,000 56000	6.7 75	68,50078.500 58,50-77000	78.500 77000	${ }_{10.5}^{103}$	6	${ }_{4}^{4.5}$	33750 32250	98,25	421,188 40313	${ }_{4}^{4.5}$	33,50 32250	42,188 40.313
arimel	shoow ay imi	m	${ }^{6}$	${ }_{60} 100$	39,00056,000	56,00	7.5	58,50-7,7,00	77,000	10.3	6	4.3	32.50	96,250	40,313	4.3	32250	40,313
Hammait	Batecompest ost6	T	4	100	10,000-1,000	16,000	${ }^{2} 1$	13,000-19,000	19,000	25	6	${ }^{3} .5$	22,250	${ }^{23,50}$	328813	1.5	-11,250	-140,03
	Balokx tocanpel	T	4	80	13,500	13.500	1.8	25,00	25,00	${ }^{3.3}$	4	-0.7	-5.30	${ }^{31,250}$	${ }^{-6.563}$	0.7	-5.250	${ }^{-6.563}$
	Canpeall 6 Gessser	T	4	80	22,00-2.8000	20,00	${ }^{3} .5$	37,00041,000	41.000	5.5	4	1.5	11.250	51.250	14,063	1.5	11.250	14,063
	Casseret Wesil beit	T	4	80	30,0003,1,00	31,00	4.1	43,00047,000	47,00	${ }_{6} .3$	4	23	17,20	58,50	21,563	${ }^{23}$	17,20	2,563
	Westeat enitimome	T	4	80	4,500	4,500	0.6	28,00	28.00	3.7	4	${ }^{0.3}$	-2,250	35.00	-2.813	${ }^{0.3}$	2250	2.813
Hewin	Fonden locasmer	T	4	70	27,00030,500	30,50	4.1	40,0004,4,000	41,00	5.5	4	1.5	11.250	51.20	14,063	1.5	11.250	14,063
	Cassmerit Reanclesester	T	4	80	24,500	24,500	${ }_{3} 3$	41,00	41,00	5.5	4	1.5	11.250	51.250	14,083	1.5	11.250	14,063
	Rancosesere westeet	T	4	70	30,00	30,00	4.0	52.500	52.500	7.0	4	3	22,500	65.25	28,125	3.0	22.500	${ }^{28,125}$
	Westestlowneest	T	4	80	30,0004,1,00	41,000	5.5	4,5,50:57,000	57,00	7.6	4	3.6	27,00	71.250	33,50	3.6	27,00	33,50
	Wecesto bilenak	T	4	80	26,00	26,00	3.5	35.50	35.50	4.7	4	0.7	5.250	44,375	6.563	0.7	5.250	6.563
	Pranorticambel	p	6	120	17.50020 .500	20.500	2.7	23,00033,500	33.500	4.5	8	${ }^{3.5}$	228,50	41.875	${ }^{328813}$	${ }^{1.5}$	-11,50	-14063
	Camperlo cosesser	P	6	120	26,00030,000	30,00	4.0	30,00033,500	36,500	4.9	8	${ }^{3} 1$	23,250	45.625	29,03	1.1	8,250	-10,313
		P	6	120	29,000	20.000	3.9	${ }_{35,500}$	35.500	4.7	8	.3.3	-24,500	44.375	${ }^{30,938}$	${ }^{1.3}$	-9,750	${ }^{121,188}$
	Luterevo Bitimowe	P	6	120	18,00028,500	28.500	${ }^{3.8}$	19,00025.5000	25,000	${ }^{3.3}$	8	4.7	33,250	${ }^{31,250}$	4.1003	${ }^{2.7}$	-20,30	${ }^{225,313}$
Kenpuosd	Biackro Canmoal	T	4	100	$\stackrel{22500}{225029500}$	22.500 20500	3.0	37,000	37000	4.9	6	${ }^{1.1}$	8.250 -250	46,50 58350	- 10.313	0.9	6,750 12750 10	8,438 15938 1
	Compel	T	4	100	23,502-2,500 22,502,	${ }^{29,500}$	3.9 3.8	$38,50043,000$ 3 3,0038,500	43,000 38,500	${ }_{5}^{5.1}$	6	-0.9	-6,750	35,720 48.25	-8,488	1.1	${ }^{12,250}$	${ }^{15.938}$
	West entlo Bithoore	T	4	100	13,500	13.500	1.8	34,00	34,00	4.5	6	${ }^{-1.5}$	-11,250	42.500	-14,03	0.5	3.750	4.688
Knossiand	W. Civy Limitosh 6	T	4	100							6							
	Keve Fw blowenoill	T	4	100	32,50040,500	40.50	54	47,000.56,500	56.500	7.5	6	1.5	11.250	70,625	14,063	3.5	26.50	${ }^{32813}$
Kireoos	Wenoil loufino Byal	T		100	42,00045,00	45.00	6.0	51,500.54,000	54,00	7.2	6	1.2	9.000	67,500	11.250	3.2	24,00	30,00
	Bumbe Byour biat Focest	T	4	100	39.00	39,00	5.2	47,500	47,500	${ }_{6} 6$	6	0.3	2.250	59.375	2.813	23	17.50	21.563
	Bira Foestowesthener	T	4	100	39,00045,500	45.500	6.1	4.5.500.54,500	54.500	${ }^{7}$	6	1.3	9,750	68.125	12,188	${ }^{3.3}$	24.50	30,938
	Westreimero Reimmond	T	4	100	30,500	30,500	4.1	43.00	43.00	5.7	6	0.3	-2,250	${ }^{57,50}$	2.813	1.7	12,750	15.938
		T	4	100	29.500 27500 2.500	29,500 27500	3.9 37	42500 34000	42,500 34000	5.7 45	6	.0 .3 .15	$\begin{array}{r}2.250 \\ -11250 \\ \hline\end{array}$	53,125 42500	$\begin{array}{r}\text { 2.813 } \\ .14083 \\ \hline 1\end{array}$	1.7 0.5	12,50 $\left.\begin{array}{l}\text { 3,750 } \\ \hline\end{array}\right)$	15.938 4.688
	Westpark to Alief-Clodine Alief-Clodine to Bellaire	$\begin{aligned} & T \\ & T \end{aligned}$	4	100 100	27,5003,5000	27,500 3,500	3.7 4.5	${ }_{\text {36,5047,500 }}^{34,00}$	34,000 47,500	${ }_{6.5}^{4.5}$	${ }_{6}^{6}$	${ }_{0.3}^{-1.5}$	${ }_{\text {-12,250 }}$	${ }_{\text {22,500 }}^{4.35}$	${ }_{2813}$	0.5 23	3,750 17,250	${ }_{\text {4, }}^{4,5688}$
${ }_{\text {Lite Yook }}^{\text {Long Point }}$	Westest totenspead	P	6	100	31,5003,7,00	37,00	4.9	3,50044,500	45.500	6.1	6	0.1	750	5.8875	937	0.1	750	${ }_{937}$
	Black osinger till	T	4	70	26.500	22.500	${ }^{3} 5$	40,500	40,500	54	4	1.4	10.500	50.25	${ }^{13,125}$	1.4	10.500	${ }^{13,125}$
	Bunter thl bocesser	T	4	70	25.500	25.500	3.4	39.000	30,000 59500	52	4	1.2	9.000	487,50	${ }^{11,250}$	${ }^{1.2}$	${ }^{9,000}$	11,50 1.505
Masen	N. City Limit to S. City Limit	${ }_{\text {T }}{ }^{\text {T }}$	4	${ }_{60}^{120}$	20,000:5,500	50,50	6.7	22.000.58,500	58,500	7.8	${ }_{4}^{4}$	0.2	-1.500	${ }^{73,125}$	-1.875	3.8	28.50	35.25
	Rosatal os crumoor	m	${ }_{2}^{2}$	60							4							
Menorial	Bmice thay ly limit westert	T	4	100	9,0002,5,000	25.00	${ }_{3} 3$	10,000:37,000	37,00	4.9	6	${ }^{1.1}$	8,250	46.250	-10,313	0.9	6,750	8.438
	Westeltlo wicest	T	4	100	34,003:3,00	35,00	4.7	45,00447,00	47,00	6.3	6	0.3	2.250	58,50	2.813	${ }^{2} 3$	17.25	21.563
	Wicestorikuocd	T	4	100	30,00032000	32,00	4.3	41,00043,000	43.000	5.7	6	${ }^{0.3}$	-2,250	53,50	-2.813	1.7	12,750	15.938
	Kituocol Doininaitiod	T	4	100	22,0027,000	27,00	3.6	38,500-1,500	41.500	5.5	6	-0.5	3,550	51.875	4.688	1.5	11.250	14,063
		T	4	100	18,503232500	32.500	4.3	31,500.51,000	51.000	6.8	6	0.8	6.000	${ }^{63,750}$	7.500	28	21.000	228,50
		T		80	22,0002.4500	24.500	${ }^{3.3}$	24,50040,500	40,500	54	4	1.4	10,500	${ }_{50,225}$	13,125 .25313	1.4	10.500 .550	-13,125
Pakkow	Wcivilimito aiaterapyess	T	4	100	13,000 25000	13,00 25000	1.7 3	24,500 4.000	24.500 4.000	$\begin{array}{r}3.3 \\ 5 \\ \hline\end{array}$	${ }_{8}^{6}$	$\begin{array}{r}2.25 \\ -25 \\ \hline\end{array}$	-20230 -1850	30,25 51250	$\begin{array}{r}\text { 225.33 } \\ .23438 \\ \hline 2 .\end{array}$	0.7 15	-5,50 11250 1220	-6.563 14038 1085
	Hosen Cioncie 0 B Barafica	T	4	${ }_{70}$	${ }^{20.500}$	${ }^{20,500}$	3.0	${ }^{42,500}$	${ }^{\text {32,500 }}$	${ }_{4}{ }^{5}$	4	${ }_{0}{ }^{2 .} 5$	2,250	40.225	${ }_{2}^{2,883}$	${ }_{0} 0.3$	${ }^{2} 2.250$	${ }^{14.813}$
	Bioafied besth	T	4	110	12,00:3,0,500	30,500	4.1	24,00040,000	40,00	${ }_{5} 3$	6	-0.7	-5,20	50,00	${ }^{-6,563}$	1.3	9,750	12,188
	SH6 to Elitige Pexy.	T	4	100							6							
Patason	Sth io midide Pevy	T	4	100	11.000	11.000	1.5	18.00	18.000	24	6	${ }^{3.6}$	27,00	22.500	33,750	1.6	-12,00	-15,000
Cuesason	Ciay Cocasthe	${ }^{\top}$	4	100	$28.00 \cdot 34$						6							
	Belliele ohamin				28,003 3, 5,00													

hwouston

Lane Demand based on 7,500 vellaneneday
For RoWs s geeaee than 160; assumed maximum number of fanes as 10

Average velicio oculuancy assume to be 1.25 personssenicide
Assumes all unnet persono demandid is in other modes

APPENDIX F

ROADWAY		Existing						future										
streat	Segment	Classfifation	Lanes	With	ADT Range	ADt (High)	Lane Demand	Estimated 2040 ADT Range	Estimated 2040 ADT (High)	$\begin{aligned} & \text { Future Lane } \\ & \text { Demand } \end{aligned}$	Lane Availability Based on ROW	$\begin{aligned} & \text { Lane Demand Not } \\ & \text { Met } \end{aligned}$	Venicice demand NotMe	Daily Vehicle	Daily Vehicle Passengers Not Met	$\begin{aligned} & \text { Lane Demand Not } \\ & \text { Met } \end{aligned}$	Vehicle Demand not Met	$\begin{gathered} \text { Daily Vehicle } \\ \text { Passengers not Met } \end{gathered}$
Rectmond	Fonten 0 Casaler	T	6	120	45,00048,000	48.000	${ }_{6} 6$	64,500.68,000	68.000	9.1	8	1.1	8.250	85.00	10.313	3.1	23.250	29.063
	Cesserer to Biepak	T	6	100	27,500	27,500	${ }^{3.7}$	48.000	48.00	${ }^{6} 4$	6	0.4	3.000	60,00	3,750	0.4	3.000	3,750
	giapaktowest bet	T	6	100	30,00	30,00	4.0	42.500	42.500	5.7	6	${ }^{0.3}$	-2,50	53.125	-2813	${ }^{0.3}$	-2.30	2.813
	Westerlt wicest	T	6	100	33,50, 3, 5,50	38,500	5.1	60,000.61,000	61.00	8.1	6	2.	15,50	76.250	19.688	2.1	15,50	19.688
	Wesest wocotari Pak	T	4	100	30,500	${ }^{30,500}$	4.1	41.500	41.500	${ }_{5}^{5.5}$	6	${ }^{0.5}$	3,750	${ }_{5}^{51,875}$	4.4888	1.5	${ }_{1}^{11250}$	${ }^{14,063}$
	Wooden Pakt o oindentod	T	4	100	27,5003,5,500	36.500	4.9	35.00046,500	46.500	6.2	6	0.2	1.500	58.125	1.875	22	16.550	20.25
	Daiketsioct ocivimit	T	4	100	19,00:3,0,000	30,00	4.0	3,500,3,000	39,00	52	6	${ }^{-0.8}$	-6,00	48,50	-7,500	1.2	9.000	11.250
	aiv Limit west thlow	T	4	100	12.500	12.500	1.7	28.00	28.00	${ }^{3} 7$	6	${ }^{2} 2$	-17,20	35.000	${ }^{21,563}$	${ }^{0.3}$	-2,250	${ }^{2} 8813$
	Westhlolow ost6	T	4	100	12,500	12.500	1.7	28.00	28,00	${ }^{3} 7$	6	23	-17,50	35.00	${ }^{21,563}$	${ }^{0.3}$	-2,250	-2813
		\uparrow	4	100							6							
Rogagale	Hamnowestark	m	4	${ }^{80}$	24,000.3.6.500	36.500	4.9	33,0005.5000	50.00	${ }_{6} 7$	4	2.7	20.50	${ }^{62500}$	2.2313	${ }^{27}$	20.50	2.25313
	Westarato Remmond	m	4	70	30,00	30.00	4.0	45.000	45.000	${ }^{6} 0$	4	2	15.000	56,50	18,50	20	15.000	18,50
	Rectront wewestimer	m	4	70	26,500	26,500	3.5 19	42000 2000	42000 2000	${ }_{5}^{56}$	4	${ }^{1.6}$	12000 18000 1800	$\begin{array}{r}52500 \\ \hline 3750 \\ \hline\end{array}$	15000 .2500	1.6	12000 $\mathbf{1 2 0 0}$	15.000 H.350
SH6	Batec Copeses of erentose	T	4	100	14,00	14,000	1.9	27,00	27,000	${ }^{36}$		${ }^{24}$	18.8000	${ }^{33,750}$	${ }^{225500}$	${ }^{0.4}$	-3,000	-3,750
	S. Civ Limito westhemer	P	6	180	57,500.63,000	${ }^{63,000}$	${ }^{8.4}$	73,000991,000	91.000	12.1	10	2.1	${ }^{15,750}$	${ }^{113,750}$	${ }^{19,688}$	${ }^{6.1}$	45,750	57,188
	Westrimer re Bial frest	P	8	180	76,00.93,300 8.200 .1500	93,000	${ }^{122}$	99,0000.12000	${ }^{112000}$	14.9	8	${ }_{6}^{69}$	517750 5 5		${ }_{6}^{64,6888}$	${ }_{6}^{69}$	51,750 5 51750	${ }_{6}^{646888}$
	Bria foest Wenoral	P	8	180	82,000.91,500	91.500	122	100,500-111.500	${ }^{111,500}$	149	8	${ }_{6}^{69}$	51,750	${ }^{139,375}$	${ }_{64,488}^{688}$	${ }^{69}$	51,750	${ }_{64,688}^{688}$
	Menoral okevew:	p	8	180	90,500-10,4,50	104500	13.9	113,500-135,000	135,000	18.0	8	10	75,00	188,750	93,50	10.0	75,00	93,50
	Kay Fw bondidid dam	P	6	${ }_{120}^{120}$	${ }^{90,500}$	30,500	${ }^{12.1}$	-10,000	101,000	${ }^{13.5}$	8	${ }_{5} 5$	${ }_{4}^{41,50}$	122,250 112500	51,563 3,500	7.5	${ }_{5}^{56,50}$	70.313 58.250
	Adides Damit Peatesenn	p	6	120	79.50	79.500	10.6	90.00	90.00	120	8	4	30,00	112.500	37,500	6.0	45.00	56,250 40888 18
		${ }^{\text {P }}$	${ }_{4}^{6}$	120 80	7,000 1.500	71,000 1.500	9.5	85000 12500	855000 12.500	11.3 1.7	${ }_{4}^{8}$	3.3 .23	24.50 17250		30.938 .21583	$\begin{array}{r}53 \\ -23 \\ \hline\end{array}$	39,50 -17250	49.988 .21583 2.63
smott	Remend owestar	m	4	80	16,500	16.500	22	21,500	${ }_{21,500}$	2.9	4	${ }_{1}^{1.1}$	${ }_{8} 8250$	28.875	-10,313	${ }_{1} 1.1$	8,250	${ }^{-1.10,313}$
	Westaratomelicaine	m	4	80	15,000-1,000	16,000	2.1	23,502-23,500	23.500	3.1	4	0.9	6.7.50	20,375	8,438	-0.9	6.750	8,438
	Alvichidine obelite	m	4	70	13,000-15,000	15.500	2.0	18,0002.2,500	20,500	2.7	4	${ }^{1.3}$	-9,50	2.5625	12,188	-1.3	-9,750	12,188
Taner	Campent cosesser	T	4	100	17,000-19,500	19.500	2.6	4,5,5004,4,000	44,00	59	6	0.1	-750	55.00	-937	1.9	14.250	${ }^{17,813}$
	Casserat Westilet	T	4	100	15,000.7.,500	17,500	${ }^{2} 3$	24,50042,500	42.500	5.7	6	${ }^{0.3}$	-2250	53,125	-2813	1.7	12,50	15.938
Towel	Campbell to Hempstead	T	4	100	${ }^{19,500}$	19,500	${ }^{26}$	46,00	46.00	${ }^{6} .1$	6	0.1	${ }^{750}$	57,500	${ }^{937}$	2.1	15,750	${ }^{19,988}$
	West entio cassier	${ }_{\text {¢ }}{ }^{\top}$	4	100 70	2,000	21,00	28	35,00	35.00	4.7	${ }_{4}^{6}$	${ }^{1.3}$	9.,50	43,750	-12,188	0.7	5.250	6,563
	Westrener to westarar onive	m	2	60							4							
	Fonden to Casserer	p	8	120	94,009.97,00	97,00	12.9	127,500-13,000	133.000	17.7	8	${ }^{9.7}$	72,750	166,250	90.388	${ }^{9.7}$	72,750	90.388
Westsimer	Cesserst Westert	p	-	150	83,00085,500	85.50	11.4	17,000-12,200	122.000	18.3	8	8.3	62.50	152.50	77,813	8.3	62.50	7,8,813
	West bello wicest	P	8	120	84,000.95,000	95.000	12.7	105.500-141,500	${ }^{141,500}$	18.9	8	10.9	${ }^{81,50}$	178.875	102,188	10.9	${ }^{81,50}$	102,188
	Weest	P	8	120	71,00:8,1,500	81.500	10.9	100,000-118,500	118,500	15.8	8	7.8	58,500	148,225	${ }^{73,125}$	7.8	58,500	${ }^{73,125}$
		P	8	120	81,500.89,000	89,00	11.9	105,500-12,000	1220,00	16.0	8	8	60,00	150,000	75,00	8.0	60,00	75.000
		P	8	${ }^{120}$	71,00084,500	${ }^{8,5000}$	${ }^{11.3}$	101,000-112,500	112.500	15.0	8	7	${ }^{52,500}$	${ }^{140,625}$	${ }_{65,525}$	7.0	${ }^{52,500}$	${ }_{65,525}$
	Eldicieab bes6	p	8	120	64,00078,000	78,00	10.4	92,000-121,000	${ }^{121,000}$	16.1	8	8.1	60,50	151,250	${ }_{75,938}$	8.1	60,75	75.938
	SH 6 b Batereclodine	p	6	120	36,500.64,000	64,000	${ }^{8.5}$	48,00880,000	88000	10.7	8	2.7	20.250	100,000	${ }^{25,313}$	${ }^{4.7}$	${ }_{35,250}$	44,063
		T	6	$\begin{array}{r}120 \\ 100 \\ \hline 1\end{array}$	${ }^{20.5002 .4 .500}$	${ }_{2}^{24,500}$	${ }_{3}^{3.3}$	${ }^{29.000032 .5500}$	32,500 32500	${ }_{4.3}^{4.3}$	${ }_{6}^{8}$	${ }_{-}^{.3 .7}$	${ }_{\text {- }}^{\text {27,750 }}$	${ }_{40,025}^{40,25}$	344,688 15988	-1.7 0.3	${ }_{\text {-12,750 }}^{-120}$	${ }_{\text {-15,938 }}^{\text {2, }}$
Westrimere Pexy.		T	4	100	11.500	11.500	1.5				6							
Wespark	Fonten lo cesserer	T	6	110	33,000.38,500	38,50	5.1	50,0005,7,000	57,00	7.6	6	1.6	12,00	71.250	15.00	1.6	12.000	15.000
		T	4	100	39,00042,500	42.500	5.7	63,000.55,000	65,00	${ }^{8.7}$	6	27	20.50	${ }^{81,50}$	2.25313	4.7	35.20	44.083
	West selt wicest	T	4	100	31,0003,5,50	36.500	4.9	41,000.54,500	54,500	7.3	6	1.3	9,750	68,125	12,188	${ }^{3} 3$	24,50	30,38
	Werestoriteod	T		100	28.000	26,00	3.5	38,004040,000	40.00	${ }_{5} 3$	6	0.7	-5.30	50,00	-6.563	1.3	9,750	12,188
	kituost Doandestrod	T	4	100	28,0003,5,500	33,500	4.5	37,500499000	49000	6.5	6	0.5	3,750	${ }_{61,250}$	4.888	2.5	18,50	23,388
		T	4	100	18,002, 2,500	21.500	2.9	3,5,003.36,000	36,00	4.8	6	${ }^{-12}$	-9,000	45.000	-11,50	0.8	6.000	7.500
Westiew	Edidisel oste	T			20,000													
	Blalock to Gessner Gessner to West Belt	T	2	70 100	$16,50023,300$ 18,0033500	cen $\begin{aligned} & 23,000 \\ & 33,500\end{aligned}$	3.1 4.5	22,5003.3000 $30,0055,500$	30.000 55,500	4.0 7	${ }_{6}^{4}$	${ }_{1.4}$	${ }_{10.500}^{0}$	$\underset{\substack{37,500 \\ 69,375}}{ }$	${ }_{13,125}^{0}$	20 3 3	15000 25.500	18,50 31,85
	West eit onilimoor	T	4	100	16.500	16.500	22	33,000	39,00	52	6	${ }^{-0.8}$	-6,000	48,750	-7,500	1.2	9.000	11.250
whesest		T	6	90	37,0043,500	43,500	${ }_{5} 8$	57,000.58,000	58,00	7.7	4	3.7	27,50	${ }^{2} 2.500$	34.688	1.7	12,75	15.938
		T	6	90	37,5046,000	46,00	6.1	67,000-7,500	7,5,50	10.3	4	${ }_{6} .3$	47.250	98.875	59.03	43	32250	40.313
	Biar foest Westhemer	T	6	90	41,00	41000	5.5	68,0007, 1,000	71.000	9.5	4	${ }_{5}^{5.5}$	41.250	88,750	${ }_{51,563}$	${ }^{3.5}$	26,50	
	Westheimer to Richmond Richmond to Westpark	T	${ }_{6}^{6}$	100 90	29.500 30,500	20,500	3.9 4.1			${ }_{8}^{8.7}$	${ }_{4}^{6}$	${ }_{4}^{2.1}$	20,50 30,50 3	${ }_{\substack{8,1875 \\ 7.5,25}}$	${ }_{\substack{25,313 \\ 38,38}}^{\text {che }}$	${ }_{2}^{27}$	20,50 15,50	${ }_{\substack{25,313 \\ 19.988}}^{\text {c, }}$
	Westat besemite	T	- 6	90	29,50040,500	40.500	54	52,50069,500	69.900	${ }_{9} 9$	4	${ }_{5.3}$	39,750	${ }_{88,775}$	49.688	${ }_{3} 3$	24.50	30,988

hwouston

- Lane Demand based on 7,500 vellanenelay
- For Rows s greater than 160, assumed maximum number of fanes as 10

 -Average venicle occupancy assumed to be 1.25 personssivenicle
... Assumes al un unet person demand is in onter modes

houst

APPENDIX G IMPLEMENTATION TOOIS

1. Tax Increment Financing (Tax Code, Chapter 311) is a tool that local governments can use to publicly finance needed structural improvements and enhanced infrastructure within a reinvestment zone. These improvements are usually undertaken to promote existing businesses and/or to attract new business to the area.
2. Tax Abatement (Tax Code, Chapter 312) is an agreement between a taxing unit and a property owner that exempts all or part of an increase in the value of real property and/or tangible personal property from taxation for a period not to exceed 10 years. Counties, cities, and special districts may enter into tax abatement agreements; school districts may not. Taxing units must adopt guidelines and criteria that govern abatements, prior to offering tax abatement agreements. These guidelines and criteria are effective for 2 years; after which they must be reviewed, revised and re-adopted by the governing body of the taxing unit.
3. An appraised value limitation (Tax Code, Chapter 313) is an agreement in which a taxpayer agrees to build or install property and create jobs in exchange for an eight-year limitation on the taxable property value for school district maintenance and operations tax (M\&O) purposes and a tax credit. The minimum limitation varies by school district. The application for a limitation on the appraised value for M\&O purposes is submitted directly to the school district and requires an application fee, which is established by each school district.
4. The Development Corporation Act of 1979 (Local Government Code, Chapters 501-505) authorizes cities to adopt a sales and use tax and establish a Type A or a Type B economic development corporation, or both to administer the tax funds, provided that city voters approve this special, dedicated tax at an election held for that purpose. All cities located in a county with a population of less than 500,000 may impose the Type A sales tax if the new combined local sales tax rate would not exceed 2 percent. Some cities located in counties with a population of 500,000 or more (Bexar, Dallas, El Paso, Harris, Hidalgo, Tarrant and Travis) also may adopt Type A sales tax for economic development efforts but a city's eligibility varies from county to county.

Type A sales tax can fund manufacturing and industrial facilities; research and development facilities; recycling facilities; distribution centers; small warehouse facilities and distribution centers; military facilities; primary job training facilities; corporate headquarter facilities; job training classes; career centers; telephone call centers; business infrastructure; airport facilities; and operation of commuter rail, light rail or commuter buses.

All cities are eligible to adopt the Type B sales tax if the combined local sales tax rate would not exceed 2 percent. Type B sales tax funds may be used for the same purposes as listed for Type A. In addition, Type B sales tax can also fund retail business incentives (if city population is less than 20,000); sports and athletic facilities; entertainment, tourist and convention facilities; public parks and related open space improvements; affordable housing; and water supply and conservation programs (with special voter approval).
5. Local Government Code Chapter 387 allows counties to create County Assistance Districts that are funded by a portion of sales taxes. Any county may adopt this sales tax, in all or part of the county, if the new combined local sales tax rate would not exceed 2 percent at any location within the district. A county may create up to four county assistance districts, but not more than one district may be created in a commissioner's precinct. The commissioners' court may serve as the governing body of the district; or alternatively, the commissioners' court, by order, may appoint a board of directors to administer the district. A county assistance district may fund construction, maintenance or improvement of roads or highways; provision of law enforcement and detention services; maintenance or improvement of libraries, museums, parks or other recreational facilities; promotion of economic development and tourism; firefighting and fire prevention services and provision of services that benefit the public welfare.
6. The Texas Enterprise Zone Program (Government Code, Chapter 2303) is an economic development tool that allows local communities to partner with the State of Texas to promote job creation and capital investment in economically distressed areas of the state. Local communities may provide incentives such as tax abatements, fee waivers and reduced regulations to businesses within an enterprise zone. They also may nominate businesses as enterprise projects. Enterprise projects are selected by the state and may be eligible for sales tax refunds and other benefits.
7. Chapters 380 (cities) and 381 (counties) of the Local Government Code grant cities and counties broad discretion to make loans and grants of public funds or the provision of public services, at little or no cost, to promote all types of business development including industrial, commercial and retail projects. Each agreement can be uniquely tailored to address the specific needs of both the local government entity and the business prospect.
8. Home rule cities, general law cities and 62 counties are authorized to impose a local hotel occupancy tax within their jurisdictions. For most cities the tax rate may not exceed 7percent of the price paid for the use of a hotel room. The tax rate for eligible counties varies. Cities with populations under 35,000 also may impose the hotel occupancy tax in the city's extraterritorial jurisdiction (ETJ). If a city adopts the hotel occupancy tax within its ETJ, the combined rate of state, county, and municipal hotel occupancy taxes may not exceed 15 percent. Expenditures of hotel occupancy tax funds must comply with a "twopart test." First, each expense must promote the hotel and convention industry (i.e. "put heads in hotel beds"). Second, each disbursement also must conform to at least one of seven statutorily-designated categories. The categories are: convention and visitor centers; convention registration; advertising the city; promotion of the arts; historic restoration and preservation; sporting events, if the city is located in a county with a population of 1,000,000 or less; and tourist transportation systems.
9. Public Improvement Districts (PID) (Local Government Code, Chapter 372) offer cities and counties a means for improving their infrastructure to promote economic growth in an area. The Public Improvement District Assessment Act allows cities and counties to levy and collect special assessments on properties that are within the city or its extraterritorial jurisdiction. Additional financing options are available to certain large counties.

PIDs may be formed to create water, wastewater, health and sanitation, or drainage improvements; street and sidewalk improvements; mass transit improvements; parking improvements; library improvements; park, recreation and cultural improvements; landscaping and other aesthetic improvements; art installation; creation of pedestrian malls or similar improvements; supplemental safety services for the improvement of the district, including public safety and security services; or supplemental business-related services for the improvement of the district, including advertising and business recruitment and development.
10. A Neighborhood Empowerment Zone (Local Government Code, Chapter 378) is a designated area within a municipality that is created to promote one or more of the following:

- Affordable housing
- An increase in economic development;
- An increase in the quality of social services, education or public safety; or,
- The rehabilitation of affordable housing in the zone.

fwest
224 | Appendix G
houston

