SAN BERNARD RIVER WATER QUALITY MODEL UPDATE

August 18, 2011

- Model Set-up
 - Watershed model
 - Watershed delineations
 - Generate model input files & establish coefficients
 - Receiving Water model
 - Establish boundary conditions
 - Segmentation based on tidal conditions and stream volumes
 - Develop model and establish coefficients
- Data gathering
- Next Steps

Model Set-up

- Watershed model

- Watershed delineations
- Generate model input files & establish coefficients
- Receiving Water model
 - Establish boundary conditions
 - Segmentation based on tidal conditions and stream volumes
 - Develop model and establish coefficients
- Data gathering
- Next Steps

Watershed delineation: input data

- Necessary to delineate watersheds to take into account:
 - Calibration stations
 - Point sources
 - Tidal boundary
 - Tributary confluence with main steam of river
 - Predominant watershed characteristics
- Data sources
 - Digital Elevation Model (DEM)
 - Stream Network Shapefile
 - Land Use/Land Cover Data Layer
 - Soil Data Layer

Delineated subbasins

Watershed Model – Generate model input files

- Input files are being developed
- Model input file requires:
 - Land use/land cover information
 - Watershed practices
 - Soils information
 - Information about bacteria sources in the watershed to establish land practices and model coefficients

Model Set-up

- Watershed model
 - Watershed delineations
 - Generate model input files & establish coefficients
- Receiving Water model
 - Establish boundary conditions
 - Segmentation based on tidal conditions and stream volumes
 - Develop model and establish coefficients
- Data gathering
- Next Steps

Tidal Prism Boundary Conditions

Upper boundary established at State Highway 35 salt water barrier dam

Tidal Prism Boundary Conditions

Lower boundary established at upstream side of intercoastal water way

Receiving Water Model – Develop model

- Model being developed
- Model requires:
 - Stream invert elevations
 - Input from upstream and watershed runoff from watershed model
 - Information about in-stream bacteria sources to establish loading and model coefficients

- Model Set-up
 - Watershed model
 - Watershed delineations
 - Generate model input files & establish coefficients
 - Receiving Water model
 - Establish boundary conditions
 - Segmentation based on tidal conditions and stream volumes
 - Develop model and establish coefficients
- Data gathering
- Next Steps

Data Gathering

- Weather data
 - Rainfall
 - Temperature
 - Solar radiation
 - Relative Humidity
 - Wind speed
- Water quality data
 - Bacteria
 - Salinity
- Flow data

Precipitation Stations

Overall Simulation and Calibration/Validation Period Selection – Rainfall Data

Stations	#	Period of
ID	Records	Record
Bellville	1189	Jan. 2000 - June 2011
Freeport	1086	Jan. 2000 - June 2011
Wharton	1548	Jan. 2000 - June 2011
Brenham	818	June 2000 - July 2011
LCRA	1026	Jan. 2000 - May 2011

 Rainfall and weather data available from January 2000 through May 2011

Calibration Stations - Flow

Calibration and Validation Period Selection

Stations ID	# Records	Period of Record
USGS	3891	Jan. 2000 - Sept. 2010
LCRA	4141	Jan. 2000 - May 2011

 Flow data available through January 2000 through September 2010

Calibration Stations – Water quality

USGS Daily Flow Data

LCRA Daily Flow Data

Overall Simulation and Calibration/Validation Period Selection – Water Quality Data

Stations	#	Period of
ID	Records	Record
17519	10	Oct. 2001 - March 2004
12147	92	Jan. 2001 - Oct. 2010
15272	12	Jan. 2001 - Aug. 2002
16370	24	Oct. 2007 - Aug. 2010
16373	76	Dec. 2001 - July 2010
17420	13	Jan. 2001 - Aug. 2002
20722	8	Feb. 2010 - Aug. 2010
20723	4	Feb. 2010 - Aug. 2010
12146	84	April 2001 - Oct. 2010
20460	26	Oct. 2007 - Oct. 2010

 Majority of bacteria data available from January 2001 through July 2010

E. coli vs. Time, Upper Region Station

Enterococci vs. Time, Lower Region Station

CDM

Calibration and Validation Period

- Selection criteria:
 - Majority of data are available January 2001 through July 2010
 - Flow data available beginning in January 2000
- Model simulation period:
 - January 1st, 2000 to September 30th, 2010
- Calibration Period:
 - January 1st, 2001 to December 31st, 2003
- Validation Period:

- Model Set-up
 - Watershed model
 - Watershed delineations
 - Generate model input files & establish coefficients
 - Receiving Water model
 - Establish boundary conditions
 - Segmentation based on tidal conditions and stream volumes
 - Develop model and establish coefficients
- Data gathering
- Next Steps

Next steps

- Watershed model
 - Complete model set-up
 - Calibrate/validate
 - BMP evaluation
- Tidal prism
 - Complete model development
 - Calibrate/validate
 - Test BMP evaluation scenarios from the watershed model

