Houston-Galveston Area Council (H-GAC) Multi-Basin Quality Assurance Project Plan (QAPP)

3555 Timmons Lane, Suite 120 Houston, Texas 77027

Clean Rivers Program

Water Quality Planning Division

Texas Commission on Environmental Quality

P.O. Box 13087, MC 234

Austin, Texas 78711-3087

Effective Period: FY 2024 to FY 2025

Questions concerning this QAPP should be directed to: Jean Wright, Houston-Galveston Area Council (H-GAC) CRP Quality Assurance Officer P.O. Box 22777 Houston, Texas 77227-2777 (713) 499-6660 jean.wright@h-gac.com

Approval Page A1

Texas Commission on Environmental Quality Water Quality Planning Division

8/31/2023

Jason Godeaux, Manager Date

Water Quality Monitoring and Assessment

Section

Saval Whitles

8/31/2023

Sarah Whitley, Team Leade

Date

Water Quality Standards and Clean Rivers Program

Lawrence Grant Bassett

8/31/2023

Date

Jenna Wadman, Project Manager

8/31/2023

Grant Bassett,

Project Quality Assurance Specialist

Clean Rivers Program

Clean Rivers Program

Date

08/31/2023

Cathy Anderson, Team Leader Data Management and Analysis Date

Monitoring Division

08/31/2023

08/31/2023

D. Jody Koehler

Date

Jason Natho

Jan not

TCEQ Quality Assurance Manager

Acting Lead CRP Quality Assurance Specialist

Houston-Galveston Area Council (H-GAC)

Jode The	August 29, 2023
Todd Running H-GAC Project Manager	Date

Jean Wright Date
H-GAC Quality Assurance Officer

Todd Runningfor Jessica CasillasAugust 29, 2023Jessica CasillasDateH-GAC Data Manager

Harris County Pollution Control Services (HCPCS)

08/29/23		Bryan Kosler	08/29/2023
Dr. Latrice Babin HCPCS CRP Project Manager	Date	Bryan Kosler HCPCS CRP Field Quality Assura	Date ance Officer
Vanessa J. de Vera 08/ Vanessa de Vera HCPCS Laboratory Manager	/ <u>29/2023</u> Date	Ticka Jackson Ericka Jackson HCPCS CRP Data Manager	08/29/2023 Date
Jane Ngari HCPCS Lab Quality Assurance Officer	08/29/2023 Date		

City of Houston, Houston Health Department (HHD)

DocuSigned by: 8/30/2023 Darryl Tate Nguyen Ly Date Darryl Tate CRP Project Manager HHD CRP Field Quality Assurance Officer 8/30/2023 Jame margano 4M643F963EB46F-Lupe Garbalena Date Jane Marzano HHD BLS Lab Manager HHD CRP Data Manager DocuBigned by: 8/30/2023 R02E75B3DE884B1 Kimvattia Smith Date HHD BLS Lab Quality Assurance Officer DocuSigned by: 8/30/2023 6GFB343G647346F Huan Nguyen Date HHD BLS Chemistry Lab Supervisor

8/30/2023

Date

HHD BLS Environmental Microbiology Section

Jennifer Myers

Supervisor

8/30/2023

8/30/2023

Date

Date

City of Houston, Drinking Water Operations (DWO)

Thakur 8/29/2023
Shubha Thakur Date CRP Project Manager & DWO Laboratory Director
Harold Longbaugh Date DWO Laboratory Manager
Narendra Joshi Date DWO Laboratory Quality Assurance Manager & CRP Lab Data Manager
Jamie Shakar Date DWO CRP Field Supervisor
Desta Takie Desta
Mike Morfin Date DWO CRP Field Data Manager

San Jacinto River Authority (SJRA)

8-29-23 Date

Shane Simpson
SJRA CRP Project Manager and
Field Quality Assurance Officer

8-29-23

Shane Simpson SJRA CRP Data Manager

Date

Environmental Institute of Houston, University of Houston – Clear Lake (EIH)

Dr. Jenny Oakley

8/29/2023

EIH CRP Project Manager

Date

Dr. Jenny Oakley

8/29/2023

Date

EIH CRP Quality Assurance Officer

Sherah McDaniel

08/29/2023

Sherah McDaniel EIH CRP Data Manager Date

Texas Research Institute for Environmental Studies (TRIES)

A 2	9 Aug 2023
Dr. Chad Hargrave TRIES CRP Project Manager	Date
Ashley Morgam-Glucia Ashley Mørgan-Olvera TRIES Field Quality Assurance Officer	29Avg2023 Date
Dr. Rachelle Smith TRIES Laboratory Manager & Quality A.	Date Surance Officer
Ashley Morgan Olvera TRIES Data Manager	1 29 Aug 2023 Date

Eastex Environmental Laboratory, Inc. (Coldspring, TX)

Eastex Lab Technical Director

'Acting' Eastex Lab Quality Assurance Officer

Natalia Bondar Eastex Lab Data Manager

A2 Table of Contents

A1	Approval Page	2
A2	Table of Contents	11
	List of Acronyms	12
A3	Distribution List	13
A4	Project/Task Organization	14
-	Figure A4.1. Organization Chart - Lines of Communication	22
	Figure A4.1a through Figure A4.1g Organizational Charts	23
A5	Problem Definition/Background	30
A6	Project/Task Description	31
A7	Quality Objectives and Criteria	33
A8	Special Training/Certification	35
	Table A8.1 The Designated Trainer for each Local Partner Agency	35
A9	Documents and Records	35
	Table A9.1a through Table A9.1h Project Documents and Records	
	Table A9.2 The Software used by Local Partners to Submit Data to H-GAC	
B1	Sampling Process Design	
B2	Sampling Methods	
	Table B2.1a through Table B2.1h Sample Storage, Preservation and Handling Requirements	
В3	Sample Handling and Custody	
	Table B3.1. Sample Handling References for Local Monitoring Partners	
B4	Analytical Methods	
B5	Quality Control	53
B6	Instrument/Equipment Testing, Inspection, and Maintenance	57
B7	Instrument Calibration and Frequency	57
B8	Inspection/Acceptance of Supplies and Consumables	
B9	Acquired Data	
B10	Data Management	
	Table B10.1 –Sampling Entity Data Submission Codes	
C1	Assessments and Response Actions	65
	Table C1.1 Assessments and Response Requirements	
	Figure C1.1 Corrective Action Process for Deficiencies	
C2	Reports to Management	67
	Table C2.1 QA Management Reports	
D1	Data Review, Verification, and Validation	69
D_2	Verification and Validation Methods	69
	Table D2.1a through Table D2.1h Data Review Tasks	
D3	Reconciliation with User Requirements	
	endix A: Measurement Performance Specifications (Table A7.1-8)	
	endix B: Task 3 Work Plan & Sampling Process Design and Monitoring Schedule (Plan)	
	endix C: Station Location Maps	
	endix D: Field Data Sheets	
	endix E: Chain of Custody Forms	
	endix F: Data Review Checklist	
	endix G: Data Summary Reports	
	endix H: Data Management Process	
App	endix I: Geospatial Data Management Plan	191

List of Acronyms

AWRL Ambient Water Reporting Limit

BTLIMS Bin Technology Laboratory Information Management System

CAP Corrective Action Plan
CE Collecting Entity
COC Chain of Custody
CRP Clean Rivers Program
DI Deionized Water
DM Data Manager

DMRG Surface Water Quality Monitoring Data Management Reference Guide, July 2019, or most

recent version

DM&A Data Management and Analysis

DWO City of Houston, Drinking Water Operations

Eastex Environmental Laboratory (Facility in Coldspring, TX only)

EPA United States Environmental Protection Agency

FY Fiscal Year

EIH Environmental Institute of Houston, University of Houston – Clear Lake

GDMP Geospatial Data Management Plan GIS Geographical Information System GPS Global Positioning System

H-GAC Houston- Galveston Area Council
HCPCS Harris County Pollution Control Services
HHD City of Houston Health Department

HHD-BLS Houston Health Department – Bureau of Laboratory Services

LCS Laboratory Control Sample

LCSD Laboratory Control Sample Duplicate

LIMS Laboratory Information Management System

LOD Limit of Detection
LOQ Limit of Quantitation

Mgr Manager MT Monitoring Type

NELAP National Environmental Laboratory Accreditation Program

PM Project Manager QA Quality Assurance QM Quality Manual

QAO Quality Assurance Officer
QAPP Quality Assurance Project Plan
QAS Quality Assurance Specialist

QC Quality Control

QMP Quality Management Plan RT Routine Monitoring

RMW Regional Monitoring Workgroup SAS Statistical Analysis Software

SE Submitting Entity

SJRA San Jacinto River Authority

SLOC Station Location

SOP Standard Operating Procedure SWQM Surface Water Quality Monitoring

SWQMIS Surface Water Quality Monitoring Information System

TMDL Total Maximum Daily Load

TCEQ Texas Commission on Environmental Quality

TNI The NELAC Institute

TRIES Texas Research Institute for Environmental Studies

TSWQS Texas Surface Water Quality Standards

WQS Water Quality Standards

A3 Distribution List

Texas Commission on Environmental Quality

P.O. Box 13087 Austin, Texas 78711-3087

Jenna Wadman, Project Manager Clean Rivers Program MC-234 (512) 239-5626 jenna.wadman@tceq.texas.gov

Jason Natho Acting Lead CRP Quality Assurance Specialist MC-165 (512) 239-1672 jason.natho@tceq.texas.gov

Cathy Anderson Team Leader, Data Management and Analysis MC-234 (512) 239-1805 cathy.anderson@tceq.texas.gov

Houston-Galveston Area Council

3555 Timmons Lane, Suite 120 Houston, Texas 77027

Todd Running, Project Manager (713) 993-4549 todd.running@h-gac.com

Jean Wright, Quality Assurance Officer (713) 499-6660 jean.wright@h-gac.com

The H-GAC will provide copies of this project plan and any amendments or appendices of this plan to each person on this list and to each sub-tier project participant, e.g., local partners, subcontractors, subparticipants, or other units of government. The H-GAC will document distribution of the plan and any amendments and appendices, maintain this documentation as part of the project's quality assurance records, and ensure the documentation is available for review. Local Partner/Sub-Tier participants & their Laboratories to receive copies of the QAPP include:

- Harris County Pollution Control Services & Laboratory
- City of Houston, Houston Health Department & Laboratory
- City of Houston, Drinking Water Operations & Laboratory
- Environmental Institute of Houston, University of Houston-Clear Lake
- San Jacinto River Authority
- Texas Research Institute for Environmental Studies & Laboratory
- Eastex Environmental Laboratory

A4 Project/Task Organization

Description of Responsibilities

TCEQ

Sarah Whitley

Team Leader, Water Quality Standards and Clean Rivers Program

Responsible for Texas Commission on Environmental Quality (TCEQ) activities supporting the development and implementation of the Texas Clean Rivers Program (CRP). Responsible for verifying that the TCEQ Quality Management Plan (QMP) is followed by CRP staff. Supervises TCEQ CRP staff. Reviews and responds to any deficiencies, corrective actions, or findings related to the area of responsibility. Oversees the development of Quality Assurance (QA) guidance for the CRP. Reviews and approves all QA audits, corrective actions, reports, work plans, contracts, QAPPs, and TCEQ QMP. Enforces corrective action, as required, where QA protocols are not met. Ensures CRP personnel are fully trained.

Jason Natho

Acting CRP Lead Quality Assurance Specialist

Participates in the development, approval, implementation, and maintenance of written QA standards (e.g., Program Guidance, SOPs, QAPPs, QMP). Assists program and project manager in developing and implementing quality system. Reviews and approves CRP QAPPs, QAPP amendments, and QAPP special appendices. Prepares and distributes annual audit plans. Conducts monitoring systems audits of Planning Agencies. Concurs with corrective actions. Conveys QA problems to appropriate management. Recommends that work be stopped in order to safeguard programmatic objectives, worker safety, public health, or environmental protection. Ensures maintenance of audit records for the CRP.

Jenna Wadman CRP Project Manager

Responsible for the development, implementation, and maintenance of CRP contracts. Tracks, reviews, and approves deliverables. Participates in the development, approval, implementation, and maintenance of written QA standards (e.g., Program Guidance, SOPs, QAPPs, QMP). Coordinates the review and approval of CRP QAPPs in coordination with the CRP Project Quality Assurance Specialist. Ensures maintenance of QAPPs. Assists CRP Lead QA Specialist in conducting H-GAC audits. Verifies QAPPs are being followed by contractors and that projects are producing data of known quality. Coordinates project planning with the H-GAC Project Manager. Reviews and approves data and reports produced by contractors. Notifies QA Specialists of circumstances which may adversely affect the quality of data derived from the collection and analysis of samples. Develops, enforces, and monitors corrective action measures to ensure contractors meet deadlines and scheduled commitments.

Cathy Anderson

Team Leader, Data Management and Analysis (DM&A) Team

Participates in the development, approval, implementation, and maintenance of written QA standards (e.g., Program Guidance, SOPs, QAPPs, QMP). Ensures DM&A staff perform data management-related tasks.

Scott Delgado

CRP Data Manager, DM&A Team

Responsible for coordination and tracking of CRP data sets from initial submittal through CRP Project Manager review and approval. Ensures that data are reported following instructions in the Data Management Reference Guide, July 2019 or most current version (DMRG). Runs automated data validation checks in the Surface Water Quality Management Information System (SWQMIS) and coordinates data verification and error correction with CRP Project Managers. Generates SWQMIS summary reports to assist CRP Project Managers' data review. Identifies data anomalies and inconsistencies. Provides training and guidance to CRP and Planning Agencies on technical data issues to ensure that data are submitted according to documented procedures. Reviews QAPPs for valid stream monitoring stations. Checks validity of parameter codes, submitting entity code(s), collecting entity code(s), and monitoring type code(s). Develops and maintains data management-related SOPs for CRP data management. Coordinates and processes data correction requests. Participates in the development, implementation, and maintenance of written QA standards (e.g., Program Guidance, SOPs, QAPPs, QMP).

Grant Bassett

CRP Project Quality Assurance Specialist

Serves as liaison between CRP management and TCEQ QA management. Participates in the development, approval, implementation, and maintenance of written QA standards (e.g., Program Guidance, SOPs, QAPPs, QMP). Serves on planning team for CRP special projects. Reviews and approves CRP QAPPs in coordination with other CRP staff. Coordinates documentation and monitors implementation of corrective actions for the CRP.

Houston-Galveston Area Council (H-GAC)

Todd Running

H-GAC Project Manager, Field Supervisor

Responsible for implementing and monitoring CRP requirements in contracts, QAPPs, and QAPP amendments and appendices. Coordinates basin planning activities and work of basin partners. Ensures monitoring systems audits are conducted to ensure QAPPs are followed by H-GAC participants and that projects are producing data of known quality. Supervises field monitoring with assistance from QAO to ensure all monitoring activities are completed as stated in the QAPP. Ensures that subparticipants are qualified to perform contracted work. Ensures CRP project managers and/or QA Specialists are notified of deficiencies and corrective actions, and that issues are resolved. Ensures that data collected is validated and are acceptable for reporting to the TCEQ."

Jean Wright

H-GAC Quality Assurance Officer

Responsible for coordinating the implementation of the QA program. Responsible for writing and maintaining the Multi-Basin QAPP and monitoring its implementation. Responsible for maintaining records of QAPP distribution, including appendices and amendments. Responsible for maintaining written records of local partner/sub-tier commitment to requirements specified in this QAPP. Responsible for identifying, receiving, and maintaining project QA records. Responsible for coordinating with the TCEQ CRP PM and/or Project QAS to resolve QA-related issues. Notifies the H-GAC Project Manager of circumstances which may adversely affect the quality of data. Coordinates and monitors deficiencies and corrective action. Responsible for validating that data collected are acceptable for reporting to the TCEQ. Coordinates the research and review of technical QA material and data related to water quality monitoring system design and analytical techniques. Conducts monitoring systems audits on project participants to determine compliance with project and program specifications, issues written reports, and follows through on findings. Ensures that field staff is properly trained and that training records are maintained.

Jessica Casillas

H-GAC Data Manager

Responsible for ensuring that field data are properly reviewed and verified. Responsible for the transfer of basin quality-assured water quality data to the TCEQ in a format compatible with SWQMIS. Coordinates and maintains records of data verification and validation. Maintains quality-assured data on H-GAC internet sites.

Eastex Environmental Laboratory (Eastex) (Coldspring, TX, facility only)

Tiffany Harrison

Laboratory Technical Director - Eastex Environmental Lab (Contract Lab)

Responsible for the overall performance, administration, and reporting of analyses performed by Eastex Environmental Laboratory (Coldspring, TX). Responsible for supervision of laboratory personnel involved in generating analytical data for the project. Ensures that laboratory personnel have adequate training and a thorough knowledge of this QAPP and related SOPs. Responsible for oversight of all laboratory operations ensuring that all QA/QC requirements are met, documentation is complete and adequately maintained, and results are reported accurately. The Technical Director reviews the final data packet after the Data Manager finishes their activities and then completes the Data Review checklist before emailing to H-GAC.

Tiffany Harrison

'Acting' Eastex Lab QAO

Responsible for the overall quality control and quality assurance of analyses performed by Eastex Environmental Laboratory (Coldspring, TX). Monitors the implementation of the QM/QAPP within the laboratory to ensure complete compliance with QA data quality objectives, as defined by this QAPP. Coordinates and monitors deficiencies and corrective actions. Conducts in-house audits to ensure compliance with written SOPs and to identify potential problems. Responsible for supervising and verifying all aspects of the QA/QC in the laboratory.

Natalia Bondar Lab Data Manager

The Data Manager reviews data entry into LIMS for accuracy, then validates the data after reviewing for validity & QA/QC requirements. Notifies the Technical Director of data pending final review and distribution.

Harris County Pollution Control Services (HCPCS)

Dr. Latrice Babin CRP Project Manager

Ensures all routine monitoring is conducted in support of the QAPP and the monitoring schedule. Ensures overall performance, administration, and reporting of analyses performed by HCPCS Laboratory is properly reported to H-GAC. Responsible for implementing and monitoring CRP requirements in QAPPs and QAPP amendments and appendices. Coordinates basin planning activities with the H-GAC Project Manager and/or QAO. Ensures H-GAC Quality Assurance Officer is notified of deficiencies and corrective actions, and that issues are resolved.

Vanessa de Vera Manager-Laboratory Services

Responsible for overall performance, administration, and reporting of analyses performed by HCPCS Laboratory. Responsible for supervision of laboratory personnel involved in generating analytical data for the project. Ensures that laboratory personnel have adequate training and a thorough knowledge of this QAPP and related SOPs. Responsible for oversight of all laboratory operations ensuring that all QA/QC requirements are met, documentation is complete and adequately maintained, and results are reported accurately. Additionally, the lab manager will review and verify all laboratory data for integrity and continuity, reasonableness and conformance to project requirements, and will confirm data is validated against the data quality objectives listed in Appendix A of this QAPP.

Jane Ngari

Lab Quality Assurance Officer (QAO)

Responsible for monitoring the activities of HCPCS laboratory personnel. Responsible for the overall quality control and quality assurance of analyses performed by HCPCS Laboratory. Monitors the implementation of the QM within the laboratory to ensure complete compliance with QA data quality objectives, as defined by this QAPP. Conducts in-house audits to ensure compliance with written SOPs and to identify potential problems. Responsible for supervising and verifying all aspects of the QA/QC in the laboratory. Responsible for coordinating the implementation of the QA program. Responsible for identifying, receiving, and maintaining project QA records. Coordinates and monitors deficiencies and corrective action.

Ericka Jackson

CRP Data Manager

Ensures that all data collected meet the data quality objectives of the project. Ensures both field and laboratory data are entered into appropriate spreadsheets and data bases and is reviewed and validated as required. Responsible for submitting all data to H-GAC in the correct format. Monitors the implementation of the QAPP within the laboratory to ensure complete compliance with QA data quality objectives, as defined by this QAPP. Responsible for identifying, receiving, and maintaining project QA records. Responsible for coordinating with the Laboratory QAO to resolve QA-related issues. Notifies the Laboratory QAO of particular circumstances which may adversely affect the quality of data. Coordinates and monitors deficiencies and corrective action with the Laboratory QAO. Responsible for ensuring that field and laboratory data collected by or submitted to H-GAC CRP are properly reviewed, verified, and validated. Formats and delivers data in the format described in the DMRG, most recent version, to H-GAC CRP Data Manager.

Bryan Kosler

CRP Field Supervisor & CRP Field QAO

Responsible for monitoring the activities of HCPCS field personnel, ensuring that all data collected meet the data quality objectives of the project. Responsible for supervising the collection, preservation, handling and delivery of samples. Responsible for ensuring that field measurements, sample custody, and documentation follow procedures described in this QAPP. Notifies the HCPCS lab QA staff of particular circumstances which may adversely affect the quality of data. Responsible for coordinating with H-GAC QAO to resolve field related issues. Trains all field monitoring personnel.

City of Houston – Houston Health Department (HHD)

Nguyen Ly

CRP Project Manager

Ensures all routine monitoring is conducted in support of the QAPP and the monitoring schedule. Responsible for implementing and monitoring CRP requirements in QAPPs and QAPP amendments and appendices. Coordinates basin planning activities with the H-GAC Project Manager and/or QAO. Ensures H-GAC Quality Assurance Officer is notified of deficiencies and corrective actions, and that issues are resolved.

Darryl Tate

CRP Field Supervisor & CRP Field QAO

Responsible for scheduling all CRP monitoring activities, QA program and for coordinating with the H-GAC QA staff to resolve monitoring and QA-related issues. Responsible for supervising the collection, preservation, handling and delivery of samples. Responsible for ensuring that field measurements, sample custody, and documentation follow procedures described in this QAPP. Notifies the HHD CRP Project Manager and/or H-GAC QAO or other staff of circumstances which may adversely affect the quality of data. Coordinates and monitors deficiencies and corrective actions. Coordinates the research and review of technical QA material and data related to water quality monitoring system design and analytical techniques. Ensures that field staff is properly trained and that training records are maintained.

Jane Marzano CRP Data Manager

Responsible for ensuring that field data are properly reviewed and verified. Formats and delivers data in in the format described in the most recent version of the DMRG to the H-GAC CRP Data Manager. Responsible for sending hard or scanned copies of field data sheets, calibration sheets, and COC forms to H-GAC CRP Data Manager.

City of Houston – Houston Health Department – Bureau of Laboratory Services (HHD-BLS)

Lupe Garbalena HHD-BLS Lab Manager

Responsible for overall performance, administration, and reporting of analyses performed by HHD-BLS. Responsible for supervision of laboratory personnel involved in generating analytical data for the project. Ensures that laboratory personnel have adequate training and a thorough knowledge of this QAPP and related SOPs. Ensures QA issues are relayed to HHD CRP Field QAO, HHD CRP Data Manager, H-GAC QAO, and/or H-GAC Data Manager. Responsible for oversight of all laboratory operations ensuring that all QA/QC requirements are met, documentation is complete and adequately maintained, and results are reported accurately. Responsible party for ensuring that laboratory staff are trained and that training records are maintained. Additionally, the lab manager will review and verify all laboratory data for integrity and continuity, reasonableness and conformance to project requirements, and will confirm data is validated against the data quality objectives listed in Appendix A of this QAPP. Provides a final review of lab data against Appendix A of this QAPP, NELAC standards and method requirements prior to submission to H-GAC.

Huan Nguyen HHD-BLS Chemistry Lab Supervisor

Responsible for inorganic chemistry laboratory testing of samples from CRP as per CRP requirements in contracts, QAPPs, and QAPP amendments and appendices. Ensures NELAP certification in CRP parameters and that projects are producing data of known quality. Ensures that subcontractors are qualified to perform contracted work. Ensures CRP project manager, laboratory manager, and/or QAO are notified of circumstances which may adversely affect quality of data derived from collection and analysis of samples. Responsible for validating that all chemistry data collected meet the data quality objectives of the project listed in Appendix A of this QAPP and are suitable for reporting to the TCEQ.

Jennifer Myers

HHD-BLS Environmental Microbiology Section Supervisor

Responsible for microbiology laboratory testing of samples from CRP as per CRP requirements in contracts, QAPPs, and QAPP amendments and appendices. Ensures NELAP certification in CRP parameters and that projects are producing data of known quality. Ensures that subcontractors are qualified to perform contracted work. Ensures CRP project manager, laboratory manager, and/or QAO are notified of circumstances which may adversely affect quality of data derived from collection and analysis of samples. Responsible for validating that all microbiology data collected meet the data quality objectives of the project listed in Appendix A of this QAPP and are suitable for reporting to the TCEQ.

Kimyattia Smith

HHD-BLS Lab Quality Assurance Officer

Responsible for ensuring the overall quality control and quality assurance of analyses performed by HHD-BLS. Monitors the implementation of the QM/QAPP within the laboratory to ensure complete compliance with QA data quality objectives, as defined by the QAPP. Communicates QA issues to HHD BLS Lab Manager, HHD CRP Data Manager, and H-GAC QAO or H-GAC Data Manager as needed. Ensures that all lab QA/QC requirements are met, that documentation is complete and adequately maintained, and results are reported accurately. Conducts in-house audits to ensure compliance with written SOPs and to identify potential problems. Responsible for supervising and verifying all aspects of the QA/QC in the laboratory. Coordinates and monitors deficiencies and corrective actions.

City of Houston - Drinking Water Operations (DWO)

Shubha Thakur

CRP Project Manager / Laboratory Director

Responsible for implementing and monitoring CRP requirements in contracts, QAPPs and QAPP amendments and appendices. Coordinates basin planning activities and work of basin partners. Ensures monitoring systems audits are conducted to ensure QAPPs are followed by City of Houston Drinking Water Operations Laboratory participants and that projects are producing data of known quality. Ensures H-GAC project manager, H-GAC QAO, and/or H-GAC data manager are notified of deficiencies and corrective actions, and that issues are resolved.

Harold Longbaugh Laboratory Manager

Responsible for overall performance, administration and reporting of analyses by City of Houston Drinking Water Operations Laboratory. Responsible for supervision of laboratory personnel involved in generating analytical data for the project. Ensures that laboratory personnel have adequate training and a thorough knowledge of this QAPP and related SOPs. Responsible for oversight of all laboratory operations ensuring that all QA/QC requirements are met, documentation is complete and adequately maintained, and results are reported accurately. Responsible for reviewing & validating field data submitted on COCs & laboratory data against raw data entered in BTLIMS.

Narendra Joshi

Lab QA Manager / CRP Lab Data Manager

Responsible for overall quality control and quality assurance of analyses performed by City of Houston Drinking Water Operations Laboratory. Monitors the implementation of the QM/QAPP within the laboratory to ensure complete compliance with QA data quality objectives, as defined by the QAPP. Conducts in-house audits to ensure compliance with written SOPs and to identify potential problems. Responsible for supervising and verifying all aspects of the QA/QC in the laboratory. Responsible for training and keeping record of lab personnel to produce quality analytical data. Communicates any QA issues with laboratory manager and laboratory director. Responsible for coordinating and monitoring deficiencies and corrective actions. Responsible for coordinating with the H-GAC QAO to resolve QA-related issues. Notifies the City of Houston Drinking Water Operations Project Manager and laboratory manager of particular circumstances which may adversely affect the quality of data. Responsible for reviewing at least 10% of laboratory data against raw data entered in BTLIMS. Coordinates and maintains records of data verification and validation. Responsible for sending analytical data with required QA/QC and Data Review Checklist to H-GAC CRP Data Manager.

Jamie Shakar CRP Field Supervisor

Responsible for supervising, scheduling and overall performance by making sure all CRP Field activities are conducted in adherence to this QAPP and SWQM Procedures.

Desta Takie CRP Field QAO

Responsible for supervising the collection, preservation, handling and delivery of samples. Responsible for ensuring that field measurements, sample custody, and documentation follow procedures described in this QAPP. Notifies the DWO Lab QA Manager of particular circumstances which may adversely affect the quality of data. Trains all field monitoring personnel and maintains training records.

Michael Morfin CRP Field Data Manager

Responsible for verifying and validating data files against measurement performance specifications and other requirements in the QAPP. Formats and delivers field data in the format described in the most recent revision of the DMRG to H-GAC CRP Data Manager. Submits hard copies of field sheets, chain-of custody reports and Data Review Checklist to H-GAC CRP Data Manager.

San Jacinto River Authority (SJRA)

Shane Simpson

CRP Project Manager / CRP Field Supervisor / CRP Field Quality Assurance Officer

Responsible for conducting routine monitoring in support of this QAPP. Responsible for implementing and monitoring CRP requirements in QAPPs, and QAPP amendments and appendices. Coordinates basin planning activities with the H-GAC. Ensures H-GAC CRP project manager and/or QAO are notified of deficiencies and corrective actions, and that issues are resolved. Responsible for supervising the collection, preservation, handling and delivery of samples. Responsible for ensuring that field measurements, sample custody, and documentation follow procedures described in this QAPP. Notifies the H-GAC QAO of particular circumstances which may adversely affect the quality of data. Trains all field monitoring personnel and maintains training records. Responsible for coordinating the implementation of the QA program. Responsible for identifying, receiving, and maintaining project QA records. Responsible for coordinating with the H-GAC QA staff to resolve QA-related issues. Coordinates and monitors deficiencies and corrective actions. Responsible for data entry of all field data.

Shane Simpson

CRP Data Manager

Responsible for verifying and validating data files against measurement performance specifications and other requirements in this QAPP. Formats and delivers data in the format described in the DMRG, most recent version, to H-GAC CRP Data Manager. Submits electronic data and supporting documents (field data sheets, chain-of-custody reports, and Data Review Checklists) to the H-GAC CRP Data Manager.

Environmental Institute of Houston (EIH) University of Houston Clear Lake

Dr. Jenny Oakley

EIH CRP Project Manager / CRP QAO / Field Supervisor

Responsible for conducting routine monitoring in support of this QAPP. Responsible for implementing and monitoring CRP requirements in, QAPPs, and QAPP amendments and appendices. Coordinates basin planning activities with the H-GAC. Trains all field monitoring personnel and maintains training records. Ensures H-GAC CRP project manager and/or QAO are notified of deficiencies and corrective actions, and that issues are resolved. Responsible for coordinating the implementation of the QA program. Responsible for identifying, receiving, and maintaining project QA records. Responsible for coordinating with the H-GAC QA staff to resolve OA-related issues. Coordinates and monitors deficiencies and corrective actions.

Sherah McDaniel CRP Data Manaaer

Responsible for verifying and validating data files against measurement performance specifications and other requirements in this QAPP. Responsible for completing the Data Review Checklist for their datasets. Formats and delivers data in the format described in the DMRG, most recent version, to H-GAC CRP Data Manager.

Texas Research Institute for Environmental Studies (TRIES)

Dr. Chad Hargrave CRP Project Manager

Responsible for conducting routine monitoring in support of this QAPP. Responsible for implementing and monitoring CRP requirements in QAPPs, and QAPP amendments and appendices. Coordinates basin planning activities with the H-GAC. Ensures H-GAC CRP project manager and/or QAO are notified of deficiencies and corrective actions, and that issues are resolved.

Ashley Morgan-Olvera

Field QAO / Field Supervisor / Data Manager

Responsible for supervising the collection, preservation, handling and delivery of samples. Responsible for ensuring that field measurements, sample custody, and documentation follow procedures described in this QAPP. Notifies the H-GAC QAO of particular circumstances which may adversely affect the quality of data. Responsible for verifying and validating field and laboratory data against measurement performance specifications and other requirements in this QAPP. Formats and delivers data in the format described in the DMRG, most recent version, to H-GAC CRP Data Manager. Trains all field monitoring personnel and maintains training records.

Dr. Rachelle Smith Lab Manager / Lab QAO

Responsible for the overall quality control and quality assurance of analyses performed by TRIES Lab. Monitors the implementation of the QM/QAPP within the laboratory to ensure complete compliance with QA data quality objectives, as defined by this QAPP. Coordinates and monitors deficiencies and corrective actions. Conducts inhouse audits to ensure compliance with written SOPs and to identify potential problems. Responsible for supervising and verifying all aspects of the QA/QC in the laboratory.

Project Organization Chart

Figure A4.1. Organization Chart - Lines of Communication

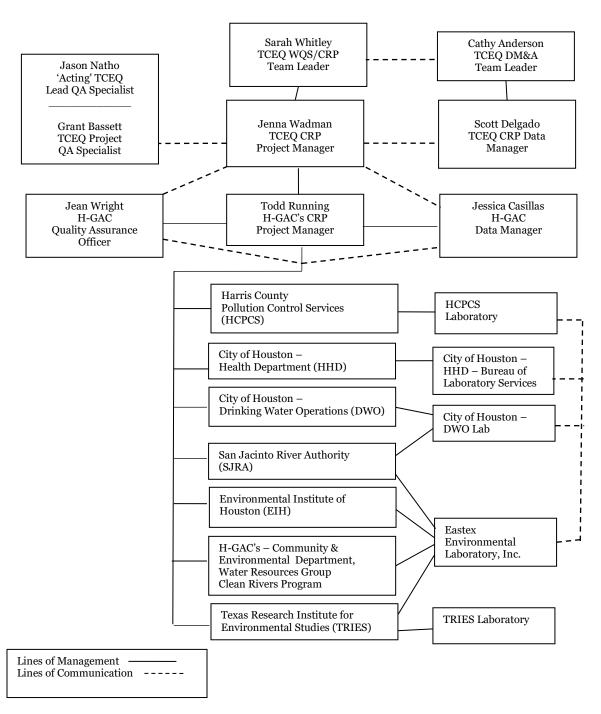


Figure A4.1a. The Houston-Galveston Area Council (H-GAC) CRP Organizational Chart.

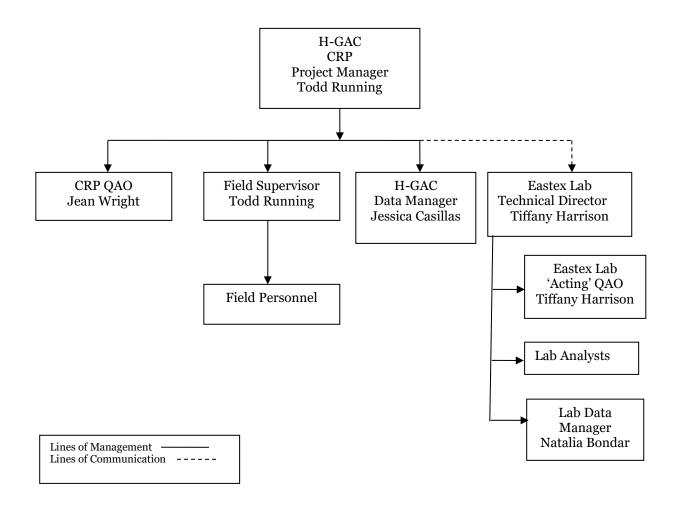


Figure A4.1b. The Harris County Pollution Control Services (HCPCS) CRP Organizational Chart.

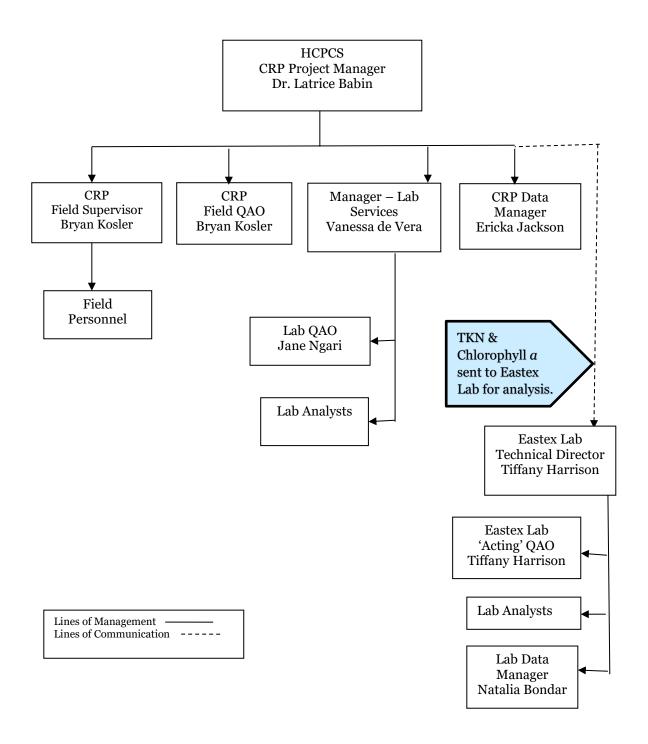


Figure A4.1c. The City of Houston, Health Department (HHD) CRP Organizational Chart.

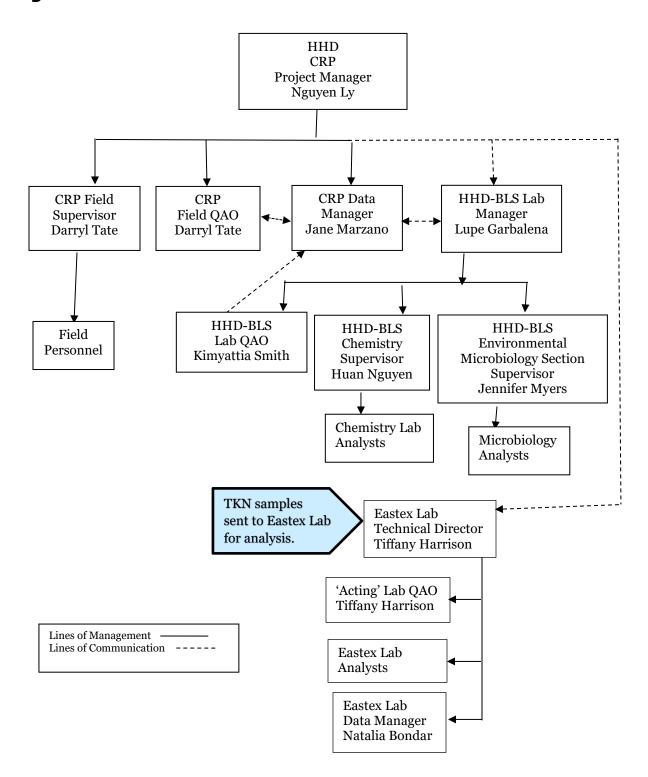


Figure A4.1d. The City of Houston, Drinking Water Operations (DWO) CRP Organizational Chart.

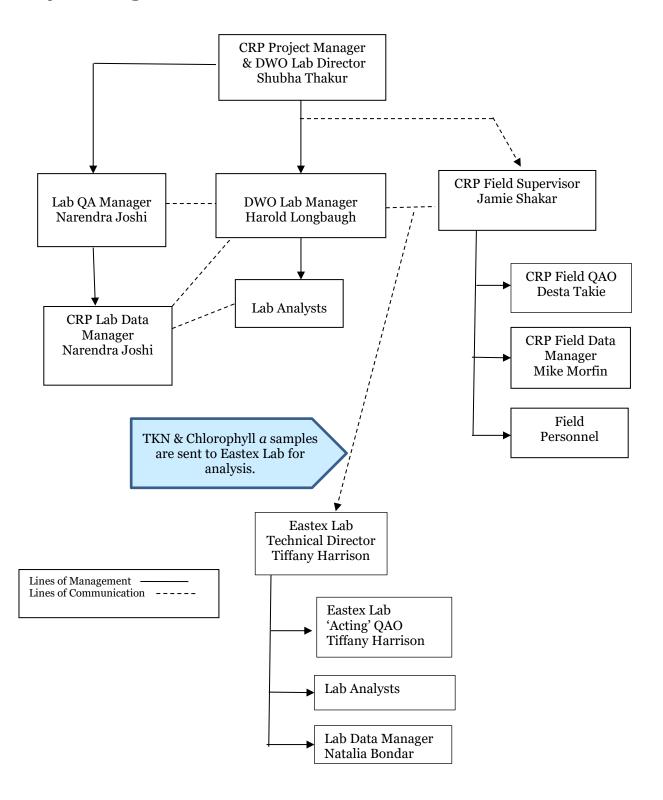


Figure A4.1e. San Jacinto River Authority (SJRA) CRP Organizational Chart.

Figure A4.1f. The Environmental Institute of Houston (EIH) at the University of Houston - Clear Lake (UHCL) CRP Organizational Chart.

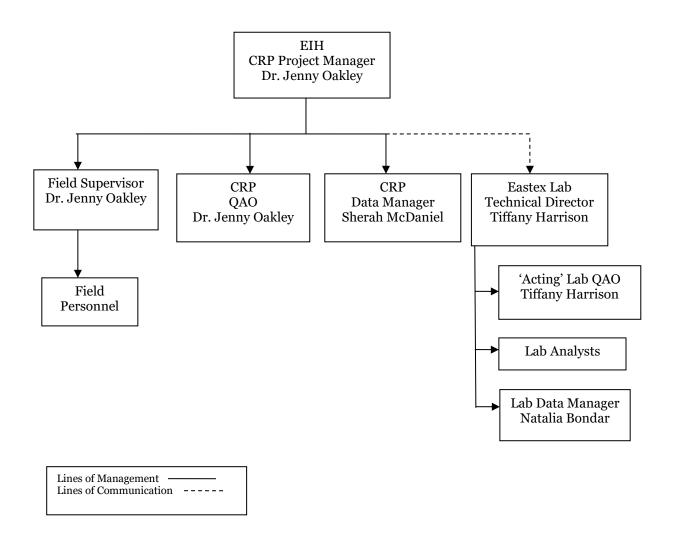
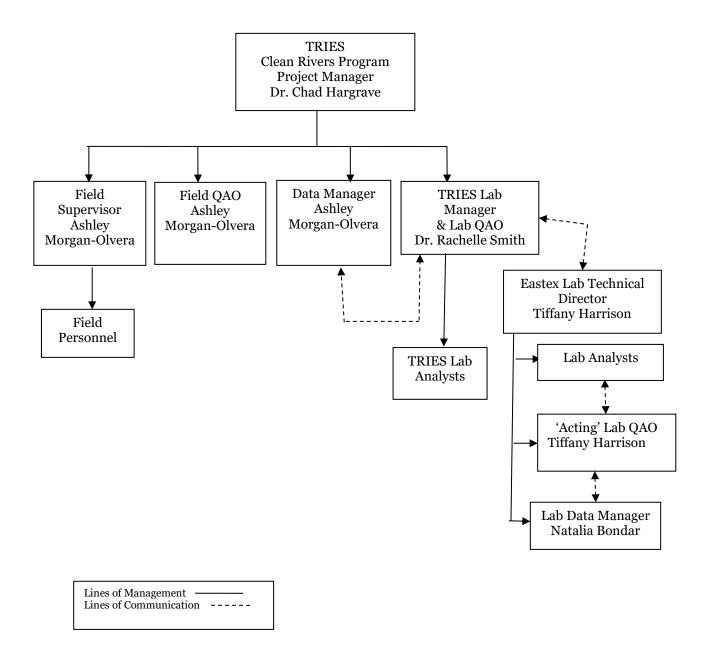



Figure A4.1g. Texas Research Institute for Environmental Studies (TRIES) CRP Organizational Chart.

A5 Problem Definition/Background

In 1991, the Texas Legislature passed the Texas Clean River Act (Senate Bill 818) in response to growing concerns that water resource issues were not being pursued in an integrated, systematic manner. The act requires that ongoing water quality assessments be conducted for each river basin in Texas, an approach that integrates water quality issues within the watershed. The CRP legislation mandates that each river authority (or local governing entity) shall submit quality-assured data collected in the river basin to the commission. Quality-assured data in the context of the legislation means data that comply with TCEQ rules for surface water quality monitoring (SWQM) programs, including rules governing the methods under which water samples are collected and analyzed and data from those samples are assessed and maintained. This QAPP addresses the program developed between the H-GAC and the TCEQ to carry out the activities mandated by the legislation. The QAPP was developed and will be implemented in accordance with provisions of the TCEQ Quality Management Plan, January 2023 or most recent version (QMP).

The purpose of this QAPP is to clearly delineate H-GAC QA policy, management structure, and procedures which will be used to implement the QA requirements necessary to verify and validate the surface water quality data collected. The QAPP is reviewed by the TCEQ to help ensure that data generated for the purposes described above are of known and documented quality, deemed acceptable for their intended use. This process will ensure that data collected under this QAPP and submitted to SWQMIS have been collected and managed in a way that guarantees its reliability and therefore can be used in water quality assessments, total maximum daily load (TMDL) and water quality standards development, permit decisions, and other program activities deemed appropriate by the TCEQ. Project results will be used to support the achievement of CRP objectives, as contained in the *Clean Rivers Program Guidance and Reference Guide FY 2024-2025*.

H-GAC is the lead agency for the Clean Rivers Program in the San Jacinto River Basin and three associated coastal basins - the Trinity-San Jacinto, the San Jacinto-Brazos and the Brazos-Colorado. In many of the state's major river basins, a legislatively created river authority leads the monitoring effort for its basin as intended by the Texas Legislature through the Clean Rivers Act. In areas not covered by a particular river authority, either a neighboring authority or some other logical regional entity is to be designated to coordinate monitoring. H-GAC is a Council of Governments (COG), the regional authority for the Gulf Coast State Planning Region, and has been actively involved in regional water quality planning and public outreach activities since the 1970's. In addition, many of the key agencies and individuals involved in water quality matters in the region already participate in environmental committees and programs initiated by H-GAC.

In addition to promoting water quality data collection, the Clean Rivers Program aims to develop and maintain a multi-basin water quality monitoring program that minimizes duplicative monitoring, facilitates the assessment process, and targets monitoring to support the permitting and standards process.

H-GAC's regional surface water quality monitoring program is a voluntary association of local monitoring agencies, coordinated through H-GAC, under the auspices of the Texas Clean Rivers Program. Federal, state, and local agencies that conduct routine surface water quality monitoring programs within the San Jacinto River, Trinity-San Jacinto Coastal, San Jacinto-Brazos Coastal and Brazos-Colorado Coastal Basins collect surface water quality monitoring information that is used not only by the individual agencies but will be shared among the other participants through a data clearinghouse maintained by H-GAC. The agencies that submit data through the H-GAC Clean Rivers Program are Harris County Pollution Control Services (HCPCS), City of Houston Health Department (HHD), City of Houston Drinking Water Operations (DWO), San Jacinto River Authority (SJRA), the Environmental Institute of Houston – University of Houston Clear Lake (EIH), the Texas Research Institute on Environmental Studies (TRIES), and the Houston-Galveston Area Council (H-GAC).

The coordinated program routinely collects surface water quality data from more than 300 sites throughout the region. Sampling includes collection of physicochemical, bacteriological, and hydrological data at varying frequencies. The program was established to collect, store, and make available water quality data, which the participating agencies require to carry out their assigned functions. The Houston-Galveston Area Council collects this data and uses it for evaluations of water quality under the Clean Rivers Program. The data is also widely used by state water quality managers, cities, counties, consultants, students, and the general public. Routine samples are collected from classified stream, reservoir, and bay segments to monitor for the attainment of uses and numerical criteria. Numerous unclassified water bodies are also monitored for attainment of designated and presumed uses, in

response to perceived risk for pollution and/or to define water quality. A map showing the locations of all fixed monitoring locations is included in Appendix C.

Since July of 2008, all laboratories working with the Clean Rivers Program have been reporting data which was produced in accordance with NELAP (National Environmental Laboratory Accreditation Program) requirements. H-GAC continues its leadership role in coordinating efforts to ensure laboratories that perform analyses on CRP samples maintain NELAP accreditation for CRP analytes.

A6 Project/Task Description

In the absence of a single, regional entity that comprehensively monitors water quality across the San Jacinto River Basin and the various coastal basins in the Houston metropolitan area, the regional monitoring approach H-GAC pursues through the Clean Rivers Program involves coordinating efforts among those local agencies which monitor water quality in some portion of the area for their own specialized purposes and with their own organizational approaches. H-GAC's Multi-Basin QAPP is the mechanism for bringing this data into the statewide water quality database, the Surface Water Quality Monitoring Information System, or SWQMIS, maintained by TCEQ. The participation of local monitoring agencies in this regional coordination effort has been largely voluntary as these agencies have not received significant CRP funding for their activities.

Houston-Galveston Area Council monitoring locations are sampled on a quarterly basis. These areas are under pressure from increasing urbanization. Routine monitoring in these areas will support future assessments and allow H-GAC or TCEQ to evaluate if or how the streams' water quality changes over time.

Harris County Pollution Control Services' surface water quality monitoring is conducted at specific sites on the Houston Ship Channel, San Jacinto River, side bays of the Houston Ship Channel and Galveston Bay, and in and around Clear Lake and its tributaries on the north shore. Data is collected on a monthly or bi-monthly basis for informational and regulatory purposes involving municipal and industrial wastewater treatment facilities.

City of Houston – Health Department monitors area surface waters to document water quality status and trends with specific concerns for human health risks associated with the use of the waters for contact/non-contact recreation and potable water supply. Data is collected six times per site per fiscal year.

City of Houston Drinking Water Operations monitors ambient water quality at many locations on Lake Houston and the tributaries flowing into the lake. Lake Houston is one of the primary sources of public water supply for the City of Houston. The monitoring that is conducted allows the Water Quality Control Division to assess the quality of water that will eventually be pumped into water production facilities, treated, and distributed to the public as drinking water. Data is collected on a monthly or bimonthly basis and provided to the Clean Rivers Program as detailed in this QAPP. Because Lake Conroe is also a public drinking water source, the City of Houston contracts with SJRA to collect water samples from that lake. Lake Conroe samples are also analyzed at the Houston Drinking Water Operations Laboratory.

San Jacinto River Authority monitors surface waters in Lake Conroe, Lake Woodlands, Upper and Lower Panther Branch and Bear Branch. Data is provided to the Clean Rivers Program as detailed in this QAPP. SJRA collects routine surface water quality samples from Lake Conroe and transports samples to the City of Houston – DWO Lab for analysis. SJRA also collects routine samples to establish baseline surface water quality information for Lake Woodlands, Panther Branch and Bear Branch – tributaries of Spring Creek. That data is also shared with the Clean Rivers Program as detailed in this QAPP.

Environmental Institute of Houston is contracted by H-GAC to monitor surface water quality locations in the San Jacinto-Brazos Coastal Basin, the Brazos-Colorado Coastal Basin, Trinity-San Jacinto Coastal Basin, and the Bays and Estuaries (Basin 24). Generally, data is collected for the Clean Rivers Program on a quarterly basis for a total of four events at each site per year. However, certain stations have been sampled monthly due to requests from a local partner or requests from the TCEQ Permitting Section.

The **Texas Research Institute for Environmental Studies** is contracted by H-GAC to monitor ambient surface water quality on the Upper East Fork San Jacinto River, Winters Bayou, and Tarkington Bayou watersheds. Field parameters, conventional and bacteria samples are collected at every site every quarter. Flow data is collected at every site if the stream is wadable at the time of sample collection.

Routine monitoring is scheduled at varying frequencies, which are determined by the parameters of concern for individual streams. Water bodies are also selected for baseline monitoring if there is high public interest; if it has a high potential for impairment; or there is a need for continuous up-to-date water quality information. Frequencies vary from quarterly for some partners and parameters to monthly in more highly impacted areas (see coordinated monitoring schedule in Appendix B).

Data collected through routine monitoring is designed to characterize water quality trends and monitor progress in protecting and restoring water quality. This monitoring will provide an overall view of water quality throughout the river and coastal basins. Baseline monitoring will include the collection of basic field parameters at all sites and the collection of bacteria, flow, and conventional chemical parameters at sites where indicated. All monitoring procedures and methods will follow the guidelines prescribed in H-GAC QAPP and the most current versions of TCEQ's *Surface Water Quality Monitoring Procedures, Volume 1: Physical and Chemical Monitoring Methods, 2012 (RG-415)*.

24-Hour Dissolved Oxygen (DO) monitoring by the Houston-Galveston Area Council and the Environmental Institute of Houston.

Numerous segments and unclassified waterbodies in H-GAC region have dissolved oxygen (DO) impairments or concerns for depressed DO. Using the most recent Texas Integrated Report, TCEQ and H-GAC identified segments and/or unclassified waterbodies which have been listed in the 303(d) List as being impaired or having DO concerns. Additional data is needed to confirm DO impairments on these segments and/or unclassified waterbodies. All data collected and summarized will be submitted to the TCEQ. H-GAC and/or EIH will conduct 24-hour DO monitoring at ten monitoring sites quarterly during the first year of the two-year contract period. At least seven monitoring sites will be monitored in year two of the two-year contract period. Monitoring events will be planned and conducted according to the most current version of TCEQ's Surface Water Quality Monitoring Procedures, Volume 1: Physical and Chemical Monitoring Methods, 2012 (RG-415).

The sites are located on segments/unclassified segments:

- Site 11405 (1113A) Armand Bayou at Fairmont Parkway (in Pasadena) along median at midpoint between bridges
- Site 16675 (1013C) Unnamed Trib of Buffalo Bayou at Glenwood Cemetery Rd 160 M W of intersection of Lubbock St and Sawyer St. in central Houston
- Site 16475 (1101D_01) Robinsons Bayou at FM270 in League City
- Site 16676 (1016D_01) Unnamed Trib of Greens Bayou at Smith Road, Houston
- Site 11118 (0902) Cedar Bayou above tidal 30 meters downstream of FM1942 north of I-10
- Site 12155 (1305) Caney Creek Above Tidal 35 M downstream of Ashwood Rd/FM 3156 in Matagorda County
- Site 21734 (1105E) Brushy Bayou at FM 213 (east of Angleton in Brazoria County)
- Site 16564 (2424B) Lake Madeline at corner of Beluche drive and Dominique Drive in Galveston
- Site 20721 (1302B) West Bernard Creek at Wharton CR 225 East of Hungerford
- Site 20723 (1302E) Mound Creek at Brazoria CR 450/Jackson Settlement Road 1.22 KM upstream of FM 1301 in West Columbia

Permit Support monitoring by the Houston-Galveston Area Council (H-GAC) and the Environmental Institute of Houston (EIH).

During FY2024, there will be no permit support monitoring conducted by EIH nor H-GAC. If this changes, an amendment will be needed to add new efforts.

See Appendix B for the project-related work plan tasks and schedule of deliverables for a description of work defined in this QAPP.

See Appendix B for sampling design and monitoring pertaining to this QAPP.

Amendments to the QAPP

Amendments to the QAPP may be necessary to address incorrectly documented information or to reflect changes in project organization, tasks, schedules, objectives, and methods. Requests for amendments will be directed from the H-GAC Project Manager and/or QAO to the CRP Project Manager electronically. The H-GAC will submit a completed QAPP Amendment document, including a justification of the amendment, a table of changes, and all pages, sections, and attachments affected by the amendment. Amendments are effective immediately upon approval by the H-GAC Project Manager, the H-GAC QAO, the CRP Project Manager, the CRP Lead QA Specialist, the TCEQ QA Manager or designee, the CRP Project QA Specialist, and additional parties affected by the amendment. Amendments are not retroactive. No work shall be implemented without an approved QAPP or amendment prior to the start of work. Any activities under this contract that commence prior to the approval of the governing QA document constitute a deficiency and are subject to corrective action as described in section C1 of this QAPP. Any deviation or deficiency from this QAPP which occurs after the execution of this QAPP will be addressed through a Corrective Action Plan (CAP). An Amendment may be a component of a CAP to prevent future recurrence of a deviation.

Amendments will be incorporated into the QAPP by way of attachment and distributed to personnel on the distribution list by the H-GAC Project Manager or designee. If adherence letters are required, the H-GAC will secure an adherence letter from each local partner/sub-tier project participant (e.g., subcontractors, sub-participant, or other units of government) affected by the amendment stating the organization's awareness of and commitment to requirements contained in each amendment to the QAPP. The H-GAC will maintain this documentation as part of the project's QA records and ensure that the documentation is available for review.

Special Project Appendices

Projects requiring QAPP appendices will be planned in consultation with the H-GAC and the TCEQ Project Manager and TCEQ technical staff. Appendices will be written in an abbreviated format and will reference the Multi-Basin QAPP where appropriate. Appendices will be approved by the H-GAC Project Manager, the H-GAC QAO, the Laboratory (as applicable), and the CRP Project Manager, the CRP Project QA Specialist, the CRP Lead QA Specialist and additional parties affected by the Appendix, as appropriate. Copies of approved QAPP appendices will be distributed by the H-GAC to project participants before data collection activities commence. The H-GAC will secure written documentation from each local partner/sub-tier project participant (e.g., subcontractors, subparticipants, other units of government) stating the organization's awareness of and commitment to requirements contained in each special project appendix to the QAPP. The H-GAC will maintain this documentation as part of the project's QA records and ensure that the documentation is available for review.

A7 Quality Objectives and Criteria

The purpose of routine water quality monitoring is to collect surface water quality data that can be used to characterize water quality conditions, identify significant long-term water quality trends, support water quality standards development, support the permitting process, and conduct water quality assessments in accordance with TCEQ's <u>Guidance for Assessing and Reporting Surface Water Quality in Texas</u>, <u>July 2022</u> or most recent version (https://www.tceq.texas.gov/downloads/water-quality/assessment/integrated-report-2022/2022-guidance.pdf). These water quality data, and data collected by other organizations (e.g., United States Geological Survey (USGS), TCEQ, etc.), will be subsequently reconciled for use and assessed by the TCEQ.

The measurement performance specifications to support the project purpose for a minimum data set are specified in Appendix A.

Ambient Water Reporting Limits (AWRLs)

For surface water to be evaluated for compliance with Texas Surface Water Quality Standards ("TSWQS") and screening levels, data must be reported at or below specified reporting limits. To ensure data are collected at or below these reporting limits, required ambient water reporting limits ("AWRL") have been established. A full listing of AWRLs can be found at

https://www.tceq.texas.gov/assets/public/waterquality/crp/QA/awrlmaster.pdf.

The limit of quantitation (LOQ) is the minimum reporting limit, concentration, or quantity of a target variable (e.g., target analyte) that can be reported with a specified degree of confidence by the laboratory analyzing the sample. Analytical results shall be reported down to the laboratory's LOQ (i.e., the laboratory's LOQ for a given parameter is its reporting limit) as specified in Appendix A.

The following requirements must be met in order to report results to the CRP:

- The laboratory's LOQ for each analyte must be set at or below the AWRL.
- Once the LOQ is established in the QAPP, that is the reporting limit for that parameter until such time as the laboratory amends the QAPP and lists an updated LOQ.
- The laboratory must demonstrate its ability to quantitate at its LOQ for each analyte by running an LOQ check sample for each analytical batch of CRP samples analyzed.
- When reporting data, no results may be reported below the LOQ stated in this QAPP.
- Measurement performance specifications for LOQ check samples are found in Appendix A.

Laboratory Measurement Quality Control Requirements and Acceptability Criteria are provided in Section B5.

Precision

Precision is the degree to which a set of observations or measurements of the same property, obtained under similar conditions, conform to themselves. It is a measure of agreement among replicate measurements of the same property, under prescribed similar conditions, and is an indication of random error.

Laboratory precision is assessed by comparing replicate analyses of Laboratory Control Samples (LCS) in the sample matrix (e.g. deionized water, sand, commercially available tissue), Matrix Spike/Matrix Spike Duplicate (MS/MSD), or sample/duplicate (DUP) pairs, as applicable. Precision results are compared against measurement performance specifications and used during evaluation of analytical performance. Program-defined measurement performance specifications for precision are defined in Appendix A.

Bias

Bias is the systematic or persistent distortion of a measurement process, which causes errors in one direction (i.e., the expected sample measurement is different from the sample's true value). Bias is a statistical measurement of correctness and includes multiple components of systematic error. Bias is determined through the analysis of LCS and LOQ check samples prepared with verified and known amounts of all target analytes in the sample matrix (e.g. deionized water, sand, commercially available tissue) and by calculating percent recovery. Results are compared against measurement performance specifications and used during evaluation of analytical performance. Program-defined measurement performance specifications for bias are specified in Appendix A.

Representativeness

Site selection, the appropriate sampling regime, comparable monitoring and collection methods, and use of only approved analytical methods will assure that the measurement data represents the conditions at the site. Routine data collected under CRP are considered to be spatially and temporally representative of ambient water quality conditions. Water quality data are collected on a routine frequency and are separated by approximately even time intervals. At a minimum, samples are collected over at least two seasons (to include inter-seasonal variation) and over two years (to include inter-year variation) and include some data collected during an index period (March 15- October 15). Although data may be collected during varying regimes of weather and flow, the data sets will not be biased toward unusual conditions of flow, runoff, or season. The goal for meeting maximum representation of the water body will be tempered by funding availability.

Comparability

Confidence in the comparability of routine data sets for this project and for water quality assessments is based on the commitment of project staff to use only approved sampling and analysis methods and QA/QC protocols in accordance with quality system requirements as described in this QAPP and in TCEQ guidance. Comparability is also guaranteed by reporting data in standard units, by using accepted rules for rounding figures, and by reporting data in a standard format as specified in the Data Management Plan in Section B10.

Completeness

The completeness of the data describes how much of the data are available for use compared to the total potential data. Ideally, 100% of the data should be available. However, the possibility of unavailable data due to accidents, insufficient sample volume, broken or lost samples, etc. is to be expected. Therefore, it will be a general goal of the project(s) that 90% data completion is achieved.

A8 Special Training/Certification

Before new field personnel independently conduct field work, the local partner's designated trainer (See table A8.1 below) trains him/her in proper instrument calibration, field sampling techniques, and field analysis procedures. The QA Officer (or designee) will retain documentation of training and the successful field demonstration in the employee's personnel file (or other designated location) and ensure that the documentation will be available during monitoring systems audits.

Table A8.1 The Designated Trainer for each Local Partner Agency

Local Partner Agency	Designated Trainer
Houston-Galveston Area Council	Kendall Guidroz
Harris County Pollution Control Services	Bryan Kosler
City of Houston – Houston Health Department	Darryl Tate
City of Houston – Drinking Water Operations	Desta Takie
San Jacinto River Authority	Shane Simpson
Environmental Institute of Houston	Jenny Oakley
Texas Research Institute for Environmental Studies	Ashley Morgan-Olvera

The requirements for obtaining certified positional data using a Global Positioning System (GPS) are located in Section B10, Data Management.

Contractors and subcontractors must ensure that laboratories analyzing samples under this QAPP meet the requirements contained in The NELAC Institute Standard (2016) Volume 1, Module 2, Section 4.5 (concerning Subcontracting of Environmental Tests).

A9 Documents and Records

The documents and records that describe, specify, report, or certify activities are listed. The list below is limited to documents and records that may be requested for review during a monitoring systems audit.

Table A9.1a Project Documents and Records – H-GAC

Document/Record	Location	Retention (yrs)	Format
QAPPs, amendments and appendices	H-GAC	<u>≥</u> 7	paper, electronic
Field SOPs	H-GAC	<u>></u> 7	paper, electronic
Laboratory Quality Manuals	H-GAC/ Eastex Lab	<u>></u> 7	paper, electronic
Laboratory SOPs	H-GAC/ Eastex Lab	<u>></u> 7	paper, electronic
QAPP distribution documentation	H-GAC	<u>></u> 7	paper, electronic
Field staff training records	H-GAC	<u>≥</u> 7	paper, electronic
Field equipment calibration/maintenance logs	H-GAC	≥7	Paper &/or electronic
Field instrument printouts	H-GAC	<u>></u> 7	paper, electronic
Field notebooks or data sheets	H-GAC	<u>≥</u> 7	paper, electronic
Chain of custody records	H-GAC & Eastex Lab	<u>></u> 7	paper, electronic
Laboratory calibration records	Eastex Lab	<u>≥</u> 7	Paper
Laboratory instrument printouts	Eastex Lab	<u>></u> 7	Paper
Laboratory data reports/results	H-GAC/ Eastex Lab	<u>></u> 7	paper, electronic
Laboratory equipment maintenance logs	Eastex Lab	<u>≥</u> 7	paper, electronic
Corrective Action Documentation	H-GAC/ Eastex Lab	<u>≥</u> 7	paper, electronic

Table A9.1b Project Documents and Records - HCPCS

Document/Record	Location	Retention (yrs)	Format
QAPPs, amendments and appendices	HCPCS / HCPCS Lab / H-GAC	<u>≥</u> 7	Paper &/or electronic
Field SOPs	HCPCS	<u>></u> 7	Paper &/or electronic
Laboratory Quality Manuals	HCPCS Lab	<u>≥</u> 7	Paper &/or electronic
Laboratory SOPs	HCPCS Lab	<u>≥</u> 7	Paper &/or electronic
QAPP distribution documentation	HCPCS / H-GAC	<u>≥</u> 7	Paper &/or electronic
Field staff training records	HCPCS	<u>></u> 7	Paper &/or electronic
Field equipment calibration/maintenance logs	HCPCS	≥7	Paper
Field instrument printouts	HCPCS	<u>≥</u> 7	Paper &/or electronic
Field notebooks or data sheets	HCPCS / H-GAC	<u>≥</u> 7	Paper &/or electronic
Chain of custody records	HCPCS / HCPCS Lab / H-GAC	≥7	Paper &/or electronic
Laboratory calibration records	HCPCS Lab	<u>≥</u> 7	Paper
Laboratory instrument printouts	HCPCS Lab	<u>≥</u> 7	Paper
Laboratory data reports/results	HCPCS Lab	<u>≥</u> 7	Paper &/or electronic
Laboratory equipment maintenance logs	HCPCS Lab	≥7	Paper
Corrective Action Documentation	HCPCS / HCPCS Lab / H-GAC	≥7	Paper &/or electronic

Table A9.1c Project Documents and Records - Houston - HHD

	, ,,,,,,,		
Document/Record	Location	Retention (yrs)	Format
QAPPs, amendments and appendices	HHD / HHD-BLS / H-GAC	≥7	Paper &/or electronic
Field SOPs	HHD	<u>≥</u> 7	Paper &/or electronic
Laboratory Quality Manuals	HHD-BLS	≥7	Paper &/or electronic
Laboratory SOPs	HHD-BLS	<u>≥</u> 7	Paper &/or electronic
QAPP distribution documentation	HHD / HHD-BLS / H-GAC	<u>≥</u> 7	Paper &/or electronic
Field staff training records	HHD	<u>≥</u> 7	Paper &/or electronic
Field equipment calibration/ maintenance logs	ннр	≥7	Paper
Field instrument printouts	HHD	<u>≥</u> 7	Paper &/or electronic
Field notebooks or data sheets	HHD / H-GAC	<u>≥</u> 7	Paper &/or electronic
Chain of custody records	HHD / HHD-BLS / H-GAC	<u>></u> 7	Paper &/or electronic
Laboratory calibration records	HHD-BLS	≥7	Paper &/or electronic
Laboratory instrument printouts	HHD-BLS	<u>></u> 7	Paper &/or electronic
Laboratory data reports/results	HHD-BLS	<u>≥</u> 7	Paper &/or electronic
Laboratory equipment maintenance logs	HHD-BLS	≥7	Paper
Corrective Action Documentation	HHD / HHD-BLS / H-GAC	<u>≥</u> 7	Paper &/or electronic

Table A9.1d Project Documents and Records – Houston - DWO

Document/Record	Location	Retention (yrs)	Format	
QAPPs, amendments and appendices	DWO / DWO Lab / H-GAC	≥7	Paper &/or electronic	
Field SOPs	DWO	<u>≥</u> 7	Paper &/or electronic	
Laboratory Quality Manuals	DWO Lab	<u>≥</u> 7	Paper &/or electronic	
Laboratory SOPs	DWO Lab	<u>≥</u> 7	Paper &/or electronic	
QAPP distribution documentation	DWO / DWO Lab / H-GAC	≥7	Paper &/or electronic	
Field staff training records	DWO	<u>></u> 7	Paper	
Field equipment calibration/ maintenance logs	DWO	≥7	Paper	
Field instrument printouts	N/A	<u>N/A</u>	N/A	
Field notebooks or data sheets	DWO / H-GAC	<u>≥</u> 7	Paper &/or electronic	
Chain of custody records	DWO / DWO Lab / H-GAC	<u>≥</u> 7	Paper &/or electronic	
Laboratory calibration records	DWO Lab	<u>≥</u> 7	Paper &/or electronic	
Laboratory instrument printouts	DWO Lab	≥7	Paper &/or electronic	
Laboratory data reports/results	DWO Lab	≥7	Paper &/or electronic	
Laboratory equipment maintenance logs	DWO Lab	≥7	Paper	
Corrective Action Documentation	DWO / DWO Lab / H-GAC	≥7	Paper &/or electronic	

Table A9.1e Project Documents and Records – SJRA – Lake Conroe

samples only

Document/Record	Location	Retention (yrs)	Format
QAPPs, amendments and appendices	SJRA / DWO Lab / H-GAC	≥7	Paper &/or electronic
Field SOPs	SJRA	<u>≥</u> 7	Paper &/or electronic
Laboratory Quality Manuals	DWO Lab	<u>≥</u> 7	Paper &/or electronic
Laboratory SOPs	DWO Lab	<u>≥</u> 7	Paper &/or electronic
QAPP distribution documentation	SJRA / DWO Lab / H-GAC	≥7	Paper &/or electronic
Field staff training records	SJRA	<u>≥</u> 7	Paper &/or electronic
Field equipment calibration/ maintenance logs	SJRA	≥7	Paper
Field instrument printouts	SJRA	<u>≥</u> 7	Paper
Field notebooks or data sheets	SJRA / H-GAC	<u>≥</u> 7	Paper &/or electronic
Data sonde files	SJRA	<u>≥</u> 7	Electronic
Chain of custody records	SJRA / DWO Lab / H-GAC	<u>></u> 7	Paper &/or electronic
Laboratory calibration records	DWO Lab	<u>≥</u> 7	Paper &/or electronic
Laboratory instrument printouts	DWO Lab	<u>≥</u> 7	Paper &/or electronic
Laboratory data reports/results	DWO Lab	<u>≥</u> 7	Paper &/or electronic
Laboratory equipment maintenance logs	DWO Lab	≥7	Paper
Corrective Action Documentation	SJRA / DWO Lab / H-GAC	≥7	Paper &/or electronic

Table A9.1f Project Documents and Records - SJRA - The

Woodlands samples only

Document/Record	Location	Retention (yrs)	Format
QAPPs, amendments and appendices	SJRA / Eastex Lab /H-GAC	≥7	Paper &/or electronic
Field SOPs	SJRA	<u>≥</u> 7	Paper &/or electronic
Laboratory Quality Manuals	Eastex Lab	≥7	Paper &/or electronic
Laboratory SOPs	Eastex Lab	≥7	Paper &/or electronic
QAPP distribution documentation	SJRA / Eastex Lab / H-GAC	≥7	Paper &/or electronic
Field staff training records	SJRA	≥7	Paper &/or electronic
Field equipment calibration/ maintenance logs	SJRA	≥7	Paper &/or electronic
Field instrument printouts	SJRA	≥7	Paper &/or electronic
Field notebooks or data sheets	SJRA / H-GAC	<u>≥</u> 7	Paper &/or electronic
Chain of custody records	SJRA / Eastex Lab / H-GAC	<u>≥</u> 7	Paper &/or electronic
Laboratory calibration records	Eastex Lab	≥7	Paper
Laboratory instrument printouts	Eastex Lab	<u>≥</u> 7	Paper
Laboratory data reports/results	Eastex Lab	<u>≥</u> 7	Paper &/or electronic
Laboratory equipment maintenance logs	Eastex Lab	≥7	Paper
Corrective Action Documentation	SJRA / Eastex Lab / H-GAC	<u>≥</u> 7	Paper &/or electronic

Table A9.1g Project Documents and Records - EIH

ibic Asity i roject bocai	nents and necesas			
Document/Record	Location	Retention (yrs)	Format	
QAPPs, amendments and appendices	EIH / Eastex Lab / H-GAC	<u>≥</u> 7	Paper &/or electronic	
Field SOPs	EIH	<u>≥</u> 7	Paper &/or electronic	
Laboratory Quality Manuals	Eastex Lab	<u>≥</u> 7	Paper &/or electronic	
Laboratory SOPs	Eastex Lab	≥7	Paper &/or electronic	
QAPP distribution documentation	EIH / Eastex Lab / H-GAC	<u>≥</u> 7	Paper &/or electronic	
Field staff training records	EIH	≥7	Paper &/or electronic	
Field equipment calibration/ maintenance logs	EIH	≥7	Paper &/or electronic	
Field instrument printouts	EIH	<u>≥</u> 7	Paper &/or electronic	
Field notebooks or data sheets	EIH / H-GAC	<u>≥</u> 7	Paper &/or electronic	
Chain of custody records	EIH / Eastex Lab / H-GAC	<u>></u> 7	Paper &/or electronic	
Laboratory calibration records	Eastex Lab	<u>≥</u> 7	Paper	
Laboratory instrument printouts	Eastex Lab	<u>≥</u> 7	Paper	
Laboratory data reports/results	Eastex Lab	<u>≥</u> 7	Paper &/or electronic	
Laboratory equipment maintenance logs	Eastex Lab	≥7	Paper	
Corrective Action Documentation	EIH / Eastex Lab / H-GAC	≥7	Paper &/or electronic	

Table A9.1h Project Documents and Records - TRIES

Document/Record	Location	Retention (yrs)	Format
QAPPs, amendments and appendices	TRIES / Eastex Lab / H-GAC	≥7	Paper &/or electronic
Field SOPs	TRIES	≥7	Paper &/or electronic
Laboratory Quality Manuals	TRIES Lab / Eastex Lab	≥7	Paper &/or electronic
Laboratory SOPs	TRIES Lab / Eastex Lab	≥7	Paper &/or electronic
QAPP distribution documentation	TRIES / TRIES Lab / Eastex Lab / H-GAC	≥7	Paper &/or electronic
Field staff training records	TRIES	<u>≥</u> 7	Paper &/or electronic
Field equipment calibration/maintenance logs	TRIES	≥7	Paper
Field instrument printouts	TRIES	<u>≥</u> 7	Paper &/or electronic
Field notebooks or data sheets	TRIES / H-GAC	<u>≥</u> 7	Paper &/or electronic
Chain of custody records	TRIES / TRIES Lab / Eastex Lab / H-GAC	≥7	Paper &/or electronic
Laboratory calibration records	TRIES Lab / Eastex Lab	≥7	Paper
Laboratory instrument printouts	TRIES Lab / Eastex Lab	≥7	Paper
Laboratory data reports/results	TRIES Lab / Eastex Lab	≥7	Paper &/or electronic
Laboratory equipment maintenance logs	TRIES Lab / Eastex Lab	≥7	Paper
Corrective Action Documentation	TRIES / TRIES Lab / Eastex Lab / H-GAC	≥7	Paper &/or electronic

Laboratory Test Reports

Test/data reports from the laboratory must document the test results clearly and accurately. Routine data reports should be consistent with the TNI Standard (2016), Volume 1, Module 2, Section 5.10 and include the information necessary for the interpretation and validation of data. The requirements for reporting data and the procedures are provided.

Eastex is the current contract lab for the analysis of all parameters in samples collected by H-GAC, EIH, and SJRA in the Lake Woodlands watershed. Eastex is also the subcontracted lab for TRIES where they prefer to keep them in the A7.1 table so subcontracting samples is a quick and easy transfer of samples if needed. Eastex also analyzes TKN and chlorophyll a in samples collected by HCPCS, DWO, and SJRA and analyzes TKN in samples collected by TRIES and HHD. Eastex Lab submits 'data packets' to the H-GAC Data Manager on a monthly basis. Data are reformatted by H-GAC as needed and combined with additional field and lab data during SAS processing and reviewed with the final datasets. For FY 2024-2025, Eastex will submit data in electronic format only. Formal lab reports (hard copy) will be available upon request. Eastex Lab reports include the following information.

- 1) The title "Test Report" or other identifying statement Formal Report only
- 2) Name and address of laboratory, and phone number with name of contact person
- 3) A unique identification number and the total number of pages, with all pages sequentially numbered Formal Report only
- 4) Name and address of client
- 5) Description and unambiguous identification of the sample(s) including the client identification code (i.e. station information)
- 6) Identification of results for any sample that did not meet sample acceptance requirements (Data Review Checklist)
- 7) Date of receipt of sample, date and time of sample collection, sample matrix, and time of sample preparation and/or analysis
- 8) Identification of the test method used plus its LOQ and LOD
- 9) Reference to sampling procedure (grab or composite) Formal Report only
- 10) Any deviations from, additions to or exclusions from SOPs, and any conditions that may have affected the quality of results, and including the use and definitions of data qualifiers
- 11) Identification of whether data are calculated on a dry weight or wet weight basis Formal report only
- 12) Identification of the reporting units such as μg/l or mg/kg
- 13) Clear identification of all test data provided by outside sources, such as subcontracted laboratories, clients, etc.
- 14) Clear identification of numerical results with values below the Reporting Limit, and
- 15) Identification of accreditation status per analysis Formal Report only

The information in test reports from other partners (HCPCS, HHD, DWO, and TRIES) will be consistent with the information that is needed to prepare data submittals to TCEQ. At the very minimum, test reports from all labs (regardless of whether they are hard copy or electronic) will include the following or be available upon request:

- Sample results
- Units of measurement
- Sample matrix
- Dry weight or wet weight (as applicable)
- Station information
- Date and time of collection
- Holding time for E.coli
- LOQ (formerly referred to as the reporting limit), and qualification of results outside the working range (if applicable)
- LOD (formerly referred to as the method detection limit) is provided to H-GAC upon request
- Certification of NELAP compliance

Otherwise, reports should be consistent with the TNI Standard and should include any additional information critical to the review, verification, validation, and interpretation of data. This should be based on the process

that has been worked out with H-GAC and is documented in Section D1 and D2 of this document.

Other local partners – HCPCS, HHD, DWO, and TRIES – share their data but review their own lab reports inhouse. Local partner lab data reports are provided to H-GAC upon request only. Each partner's data manager works with their respective labs to receive their lab reports and input results to a database or spreadsheet which is then sent to H-GAC in an electronic format.

Electronic Data

H-GAC's local partners/sub-tier participants submit data to H-GAC electronically. Each partner's data set is submitted with a completed Data Review Checklist (Appendix F). See Section B10 for a description of the Data Management Process.

Data is submitted in one of two formats, as shown Table A9.2. Upon arrival at H-GAC, datasets are copied to partner-specific "raw data" folders on a secured network drive that is regularly backed-up by H-GAC's IT staff. The data manager reformats the data to create an input dataset for SAS processing and saves it in a separate folder as a "working" file. Unaltered copies of submitted data are retained in the raw data folder. Partner-specific SAS code has been written to create Access tables for review; identify outliers and possible errors, and automate the correction, deletion, or acceptance of suspect data values; and to create properly formatted text files to be submitted to TCEQ. Many tasks previously performed manually are now performed as part of SAS processing and additional improvements to the data management process are made on an ongoing basis. While many data validation and verification tasks are now part of routine processing, data sets are still reviewed manually by H-GAC's QAO to identify issues not found during routine processing. The data processing, verification, and review process is described in H-GAC's Data Management Procedures (Appendix H).

The following table outlines how data is received from each local partner/sub-tier participant. All local partner data is submitted with a Data Review Checklist. The Checklist includes specific information regarding each data set. As H-GAC performs data processing and management tasks, the Data Manager compiles a Data Summary report (see example in Appendix G) that is submitted with the Event/Results text files. The Data Summary Report/Sheet will include information from the local partner Data Review Checklists as well as information about any changes to or deletions of data by H-GAC before it was submitted to TCEQ.

Table A9.2 The Software used by Local Partners to Submit Data to H-GAC

Local Partners/Sub-Tier Participants	Software
HCPCS	MS Excel
HHD	MS Access
DWO	MS Excel
SJRA	MS Excel
EIH	MS Excel
TRIES	MS Excel
Eastex Environmental Lab	MS Excel

Data will be submitted electronically to the TCEQ in the Event/Result file format described in the most current version of the DMRG, which can be found at https://www.tceq.texas.gov/waterquality/data-management/dmrg_index.html. A completed Data Review Checklist and Data Summary Report (see Appendix F and G) will be included with each data submittal to TCEQ.

B1 Sampling Process Design

See Appendix B for sampling process design information and monitoring tables associated with data collected under this QAPP.

B2 Sampling Methods

Field Sampling Procedures

Field sampling will be conducted in accordance with the latest versions of the *TCEQ Surface Water Quality Monitoring Procedures Volume 1: Physical and Chemical Monitoring Methods for Water, Sediment, and Tissue, 2012* (RG-415) and *Volume 2: Methods for Collecting and Analyzing Biological Assemblage and Habitat Data, 2014* (RG-416), collectively referred to as "SWQM Procedures." Updates to SWQM Procedures are posted to the Surface Water Quality Monitoring Procedures website

(https://www.tceq.texas.gov/waterquality/monitoring/swqm_guides.html), and shall be incorporated into the H-GAC's and local partner's/sub-tier participant's procedures, QAPP, SOPs, etc., within 60 days of any final published update. Additional aspects outlined in Section B below reflect specific requirements for sampling under CRP and/or provide additional clarification.

Table B2.1a Sample Storage, Preservation and Handling Requirements for H-GAC Samples Analyzed by Eastex Environmental Laboratory

		<u> </u>			
Parameter	Matrix	Container	Preservation	Sample Volume	Holding Time
TSS	water	Plastic	Cool to <6°C but not frozen	1 L	7 days
Sulfate	water	Plastic	Cool to <6°C but not frozen	100 mL ³	28 days
Chloride	water	Plastic	Cool to <6°C but not frozen	100 mL ³	28 days
E.coli IDEXX Colilert	water	Sterile Plastic w/ sodium thiosulfate	Cool to <6°C but not frozen	120 mL ⁴	8 hours¹
TKN ⁷	water	Plastic	Cool to <6°C but not frozen H ₂ SO ₄ to pH <2	500 mL ²	28 days
Ammonia-N	water	Plastic	Cool to <6°C but not frozen H ₂ SO ₄ to pH <2	125 mL²	28 days
Nitrite-N	water	Plastic	Cool to <6°C but not frozen	100 mL ^{3 and 5}	48 hours
Nitrate-N	water	Plastic	Cool to <6°C but not frozen	100 mL ^{3 and 5}	48 hours
Nitrite + nitrate-N	water	Plastic	Cool to <6°C but not frozen, H ₂ SO ₄ to pH <2	125 mL ^{2 and 5}	28 days
Phosphorus-P, total	water	Plastic	Cool to <6°C but not frozen HNO ₃ to pH <2 at lab	125 mL ⁶	28 days

^{1.} *E.coli* samples should always be processed as soon as possible and incubated no later than 8 hours from time of collection. When transport conditions necessitate sample incubation after 8 hours from time of collection, the holding time may be extended, and samples must be processed as soon as possible and within 30 hours.

2. Three tests are analyzed from one 1L plastic bottle.

3. One 500 mL plastic container is used to collect these four parameters.

4. Maximum volume analyzed for *E.coli* is 50 ml allowing duplicate analyses from 1 container.

7. Eastex Environmental Lab will pick up and analyze sample(s).

^{5.} Eastex will run IC speciation (100 mL samples) but will analyze Nitrite+Nitrate (125 mL sample) by cadmium reduction method if IC equipment is down.

^{6.}Tôtal phosphorus sample taken out of TSS 1-liter and preserved at the lab with Nitric Acid (HNO3) in separate bottle.

Table B2.1b Sample Storage, Preservation and Handling Requirements for HCPCS

Parameter	Matrix	Container	Preservation	Sample Volume	Holding Time
TSS	water	Plastic	Cool to <6°C but not frozen	1/2 Gal	7 days
Enterococci IDEXX Enterolert	water	Sterile Plastic w/ sodium thiosulfate	Cool to <6°C but not frozen	120 mL	8 hours
TKN¹	water	Plastic	Cool to <6°C but not frozen H ₂ SO ₄ to pH <2	500 mL	28 days¹
Ammonia-N	water	Plastic	Cool to <6°C but not frozen H ₂ SO ₄ to pH <2	50 mL²	28 days
Nitrite + nitrate-N	water	Plastic	Cool to <6°C but not frozen, H ₂ SO ₄ to pH <2	50 mL²	28 days
Phosphorus-P, total	water	Plastic	Cool to <6°C but not frozen H ₂ SO ₄ to pH <2	50 mL²	28 days
Chlorophyll-a ¹	water	Brown plastic	Dark & iced before filtration; Dark & frozen after filtration	4 L	Filtered w/in 48 hours; after filtered, then frozen up to 24 days¹

^{1.} Eastex Environmental will pick up and analyze samples(s).

Table B2.1c Sample Storage, Preservation and Handling Requirements for HHD

Parameter	Matrix	Container	Preservation	Sample Volume	Holding Time
TSS	water	Plastic	Cool to <6°C but not frozen	1000 mL ³	7 days
Sulfate	water	Plastic	Cool to <6°C but not frozen	100 mL ³	28 days
Chloride	water	Plastic	Cool to <6°C but not frozen	100 mL ³	28 days
E.coli IDEXX Colilert-18	water	Sterile Plastic w/ sodium thiosulfate	Cool to <6°C but not frozen	120 mL/250 mL	8 hours1
Enterococci IDEXX Enterolert	water	Sterile Plastic w/ sodium thiosulfate	Cool to <6°C but not frozen	120 mL	8 hours
TKN ²	water	Plastic	Cool to <6°C but not frozen H ₂ SO ₄ to pH <2	500 mL	28 days²
Ammonia-N	water	Plastic	Cool to <6°C but not frozen H ₂ SO ₄ to pH <2	100 mL ⁴	28 days
Nitrate-N	water	Plastic	Cool to <6°C but not frozen	100 mL ³	48 hours
Nitrite-N	Water	Plastic	Cool to <6°C but not frozen	100 mL ³	48 hours
Phosphorus-P, total	water	Plastic	Cool to <6°C but not frozen H ₂ SO ₄ to pH <2	100 mL ⁴	28 days

^{1.} E.coli samples should always be processed as soon as possible and incubated no later than 8 hours from time of collection. When transport conditions necessitate sample incubation after 8 hours from time of collection, the holding time may be extended, and samples must be processed as soon as possible and within 30 hours.

2. Eastex Environmental Lab will pick up and analyze sample(s).

^{2.} Three nutrient tests are collected from one 500 mL plastic container.

^{3.} Multiple tests are collected from one 1-gallon plastic cubitainer that has not been acidified.

4. Multiple tests are conducted out of one 1-liter plastic cubitainer which has been preserved with acid.

Table B2.1d Sample Storage, Preservation and Handling Requirements for DWO

Parameter	Matrix	Container	Preservation	Sample Volume	Holding Time
TSS	water	Plastic	Cool to <6°C but not frozen	1000 mL	7 days
Sulfate	water	Plastic	Cool to <6°C but not frozen	50 mL ³	28 days
Chloride	water	Plastic	Cool to <6°C but not frozen	50 mL ³	28 days
E.coli IDEXX Colilert	water	Sterile Plastic w/ sodium thiosulfate	Cool to <6°C but not frozen	120 mL / 250 mL ⁴	8 hours¹
TKN ²	water	Plastic	Cool to <6°C but not frozen H ₂ SO ₄ to pH <2	500 mL	28 days²
Ammonia-N	water	Plastic	Cool to <6°C but not frozen H ₂ SO ₄ to pH <2	500 mL	28 days
Nitrite-N	Water	Plastic	Cool to <6°C but not frozen	50 mL ³	48 hours
Nitrate-N	water	Plastic	Cool to <6°C but not frozen	50 mL ³	48 hours
Phosphorus-P, total	water	Brown, glass bottle	Cool to <6°C but not frozen H ₂ SO ₄ to pH <2	250 mL ⁵	28 days
Chlorophyll-a	water	Brown plastic	Dark & iced before filtration; Dark & frozen after filtration	4 L	Filtered w/in 48 hours; after filtered, then frozen up to 24 days²
Alkalinity, Total	water	Plastic	Cool to <6°C but not frozen	50 mL ³	14 days

^{1.} *E.coli* samples should always be processed as soon as possible and incubated no later than 8 hours from time of collection. When transport conditions necessitate sample incubation after 8 hours from time of collection, the holding time may be extended, and samples must be processed as soon as possible and within 30 hours.

Table B2.1e Sample Storage, Preservation and Handling Requirements for SJRA Samples Collected from Lake Conroe and Analyzed by DWO Laboratory

Parameter	Matrix	Container	Preservation	Sample Volume	Holding Time
Alkalinity, Total	water	Plastic	Cool to <6°C but not frozen	50 mL ³	14 days
TSS	water	Plastic	Cool to <6°C but not frozen	1000 mL	7 days
Sulfate	water	Plastic	Cool to <6°C but not frozen	50 mL ³	28 days
Chloride	water	Plastic	Cool to <6°C but not frozen	50 mL ³	28 days
E.coli IDEXX Colilert	water	Sterile Plastic w/ sodium thiosulfate	Cool to <6°C but not frozen	120 mL / 250 mL ⁴	8 hours¹
TKN ²	water	Plastic	Cool to <6°C but not frozen H ₂ SO ₄ to pH <2	500 mL	28 days²
Ammonia-N	water	Plastic	Cool to <6°C but not frozen H ₂ SO ₄ to pH <2	500 mL	28 days
Nitrite-N	water	Plastic	Cool to <6°C but not frozen	50 mL ³	48 hours

^{2.} Eastex Environmental Lab will pick up and analyze sample(s).

^{3.} All tests are collected in one 500 mL plastic bottle.

^{4.} Volume analyzed for *E. coli* is 100 ml and collected in 120mL sterilized bottle from each site and one 250mL sterilized bottle from one site with each sampling event allowing duplicate analyses from the container.

^{5.} Collect in 250mL Amber Glass bottle for another lab test as well.

Parameter	Matrix	Container	Preservation	Sample Volume	Holding Time
Nitrate-N	water	Plastic	Cool to <6°C but not frozen	50 mL ³	48 hours
Phosphorus-P, total	water	Brown, glass bottle	Cool to <6°C but not frozen H ₂ SO ₄ to pH <2	250 mL ⁵	28 days
Chlorophyll-a ²	water	Brown plastic	Dark & iced before filtration; Dark & frozen after filtration	4 L	Filtered w/in 48 hours; after filtered, then frozen up to 24 days²

^{1.} *E.coli* samples should always be processed as soon as possible and incubated no later than 8 hours from time of collection. When transport conditions necessitate sample incubation after 8 hours from time of collection, the holding time may be extended, and samples must be processed as soon as possible and within 30 hours.

Table B2.1f Sample Storage, Preservation and Handling Requirements for SJRA Samples Collected from The Woodlands and Analyzed at Eastex Environmental Laboratory

Parameter	Matrix	Container	Preservation	Sample Volume	Holding Time
TSS	water	Plastic	Cool to <6°C but not frozen	1 L	7 days
Sulfate	water	Plastic	Cool to <6°C but not frozen	100 ml ³	28 days
Chloride	water	Plastic	Cool to <6°C but not frozen	100 mL ³	28 days
E.coli IDEXX Colilert	water	Sterile Plastic w/ sodium thiosulfate	Cool to <6°C but not frozen	120 mL ⁴	8 hours¹
TKN ⁷	water	Plastic	Cool to <6°C but not frozen H ₂ SO ₄ to pH <2	500 mL ²	28 days
Ammonia-N	water	Plastic	Cool to <6°C but not frozen H ₂ SO ₄ to pH <2	125 mL²	28 days
Nitrite-N	water	Plastic	Cool to <6°C but not frozen	100 mL ^{3 and 5}	48 hours
Nitrate-N	water	Plastic	Cool to <6°C but not frozen,	100 mL ^{3 and 5}	48 hours
Nitrite+Nitrate -N	water	Plastic	Cool to <6°C but not frozen H ₂ SO ₄ to pH <2	125 mL ^{2 and 5}	28 days
Phosphorus-P, total	water	Plastic	Cool to <6°C but not frozen HNO ₃ to pH <2 ⁶ at lab	125 mL	28 days
Chlorophyll-a	water	Brown plastic	Dark & iced before filtration; Dark & frozen after filtration	4 L	Filtered w/in 48 hours; after filtered, then frozen up to 24 days

^{1.} *E.coli* samples should always be processed as soon as possible and incubated no later than 8 hours from time of collection. When transport conditions necessitate sample incubation after 8 hours from time of collection, the holding time may be extended, and samples must be processed as soon as possible and within 30 hours.

^{2.} Eastex Environmental Lab will pick up and analyze sample(s).

^{3.} One 500 mL plastic bottle is collected, specified volumes withdrawn for analysis.

^{4.} Volume analyzed for *E. coli* is 100 ml and collected in 120mL sterilized bottle from each site and one 250mL sterilized bottle from one site with each sampling event allowing duplicate analyses from the container.

^{5.} Collect in 250mL Amber Glass bottle for another lab test as well.

^{2.} Three tests are collected from one 1 L plastic bottle.

^{3.} One 500 mL plastic container is used to collect these four parameters.

^{4.} Maximum volume analyzed for E.coli is 50 ml allowing duplicate analyses from 1 container.

^{5.} Eastex will run IC speciation (100 mL samples) first but will analyze Nitrite+Nitrate (125 mL sample) by cadmium reduction method if IC equipment is down.

^{6.} T. phosphorus sample taken out of TSS 1-liter and preserved at the lab with Nitric Acid (HNO3) in separate bottle.

^{7.} Eastex Environmental Lab will pick up and analyze sample(s).

Table B2.1g Sample Storage, Preservation and Handling Requirements for EIH. Samples Analyzed by Eastex Environmental

Laboratory

Parameter	Matrix	Container	Preservation	Sample Volume	Holding Time
TSS	water	Plastic	Cool to <6°C but not frozen	1 L	7 days
Sulfate	water	Plastic	Cool to <6°C but not frozen	100 ml ³	28 days
Chloride	water	Plastic	Cool to <6°C but not frozen	100 mL ³	28 days
E.coli IDEXX Colilert	water	Sterile Plastic w/ sodium thiosulfate	Cool to <6°C but not frozen	120 mL ⁴	8 hours¹
Enterococci IDEXX Enterolert	water	Sterile Plastic w/ sodium thiosulfate	Cool to <6°C but not frozen	120 mL ⁴	8 hours
TKN ⁷	water	Plastic	Cool to <6°C but not frozen H ₂ SO ₄ to pH <2	500 mL ²	28 days
Ammonia-N	water	Plastic	Cool to $<$ 6°C but not frozen H_2SO_4 to pH $<$ 2	125 mL²	28 days
Nitrite-N	water	Plastic	Cool to <6°C but not frozen	100 mL ^{3 and 5}	48 hours
Nitrate-N	water	Plastic	Cool to <6°C but not frozen	100 mL ^{3 and 5}	48 hours
Nitrite + nitrate-N	water	Plastic	Cool to <6°C but not frozen, H ₂ SO ₄ to pH <2	125 mL ^{2 and 5}	28 days
Phosphorus-P, total	water	Plastic	Cool to <6°C but not frozen HNO3 to pH <2 in lab	125 mL ⁶	28 days
Chlorophyll-a	water	Brown plastic	Dark & iced before filtration; Dark & frozen after filtration	4 L	Filtered w/in 48 hours; after filtered, then frozen up to 24 days

^{1.} *E.coli* samples should always be processed as soon as possible and incubated no later than 8 hours from time of collection. When transport conditions necessitate sample incubation after 8 hours from time of collection, the holding time may be extended, and samples must be processed as soon as possible and within 30 hours.

2. Three tests are analyzed from one 1L plastic bottle.

3. One 500 mL plastic container is used to collect these four samples.

4. Maximum volume analyzed for bacteria analysis is 50 ml allowing duplicate analyses from 1 container.

6. T. Phosphorus sample taken out of TSS 1-liter and preserved at the lab with Nitric Acid (HNO3) in separate bottle if sample needed.

7. Eastex Environmental Lab will pick up and analyze sample(s).

Table B2.1h Sample Storage, Preservation, and Handling Requirements for TRIES. Samples Analyzed by the TRIES Laboratory (or Eastex Environmental Laboratory as necessary)

<u> Laborator</u>	, (O, E	ISLEX EIIVII OI	inicital Eaboratory	as neces	sar y j
Parameter*	Matrix	Container	Preservation	Sample Volume	Holding Time
TSS	water	Plastic	Cool to <6°C but not frozen	1 L	7 days
Sulfate	water	Plastic	Cool to <6°C but not frozen	100 mL ³	28 days
Chloride	water	Plastic	Cool to <6°C but not frozen	100 mL ³	28 days
E.coli IDEXX Colilert	water	Sterile Plastic w/ sodium thiosulfate	Cool to <6°C but not frozen	250 mL ² 100 mL	8 hours1
TKN ⁷	water	Plastic	Cool to <6°C but not frozen H ₂ SO ₄ to pH <2 in field	500 mL	28 days
Ammonia-N	water	Plastic	Cool to <6°C but not frozen H ₂ SO ₄ to pH <2 in field	125 mL	28 days

^{5.} Eastex will run IC speciation (100 mL samples) first but will analyze Nitrite+Nitrate (125 mL sample) by cadmium reduction method if IC equipment is down.

Parameter*	Matrix	Container	Preservation	Sample Volume	Holding Time
Nitrite-N	water	Plastic	Cool to <6°C but not frozen	125 mL ³	48 hours
Nitrate-N	water	Plastic	Cool to <6°C but not frozen	125 mL ³	48 hours
Nitrite + Nitrate-N	water	Plastic	Cool to <6°C but not frozen, H ₂ SO ₄ to pH <2 in field	125 mL	28 days ^{4 & 5}
Phosphorus-P, total	water	Plastic	Cool to <6°C but not frozen HNO ₃ to pH <2 in field	125 mL ⁶	28 days

If TRIES does not have accreditation or they have an issue with equipment, TRIES will subcontract affected parameters to Eastex to get all the parameters they committed to.

- 1. *E.coli* samples should always be processed as soon as possible and incubated no later than 8 hours from time of collection. When transport conditions necessitate sample incubation after 8 hours from time of collection, the holding time may be extended, and samples must be processed as soon as possible and within 30 hours.
- 2. One bacteria sample collected in 250 mL sterile container during each sampling run to allow duplicate analysis from 1 container. Otherwise, bacteria samples collected in 120 mL sterile container during the run.
- 3. One 250 mL plastic container is used to collect these four samples.
- 4. Eastex Environmental Lab will pick up and analyze sample(s) if necessary.
- 5. TRIES & Eastex can both run IC speciation but if TRIES IC unit is down, Eastex will analyze Nitrite+Nitrate by cadmium reduction method instead.
- 6. T. Phosphorus sample collected in separate 125 ml plastic bottle and preserved with Nitric Acid (HNO3) in the field.
- 7. Eastex Environmental Lab will pick up and analyze sample(s).

Sample Containers

Certificates from sample container manufacturers are maintained in a notebook by each of the monitoring partners as appropriate. Information about the various sample containers for each local partner is described below.

<u>Houston-Galveston Area Council (H-GAC)</u>

All sample containers are provided to H-GAC by their contract lab, Eastex. The lab performs and tracks required QC procedures for all bottles purchased.

- Plastic, disposable sample containers are used for conventional parameters.
- Sterile, sealed, 120 mL plastic, disposable bottles with a sodium thiosulfate tablet added, are used for bacteriological samples.
- When preservation is required for specific parameters, the acid is added to the container in the field-by-field personnel immediately after samples are collected. The total phosphorus parameter preservation is completed in the lab.

Harris County Pollution Control Services (HCPCS)

All sample containers are purchased by the HCPCS Lab except as noted below. The labs perform and track all required QC procedures for the bottles they purchased and provide to the field crew.

- Pre-cleaned, plastic, disposable sample containers are used for conventional parameters.
- Sterile, sealed, 120 mL plastic, disposable bottles with a sodium thiosulfate tablet added, are used for bacteriological samples.
- Brown, polyethylene, 4-liter cubitainers are used routinely for chlorophyll-*a* samples and are provided by H-GAC's contract lab, Eastex Environmental Lab.
- Pre-cleaned, plastic, disposable sample containers for the TKN samples are also provided by H-GAC's contract lab, Eastex Environmental Lab.
- When preservation is required for particular parameters, the bottles are pre-acidified at the lab.
 Containers are never dipped underwater but are filled using a white or opaque, plastic triple-rinsed pitcher with water sample collected from the required depth as specified in the SWQM Procedures Volume 1 manual.

City of Houston - Health Department (HHD)

All sample containers are purchased by the Bureau of Pollution Control and Prevention except as noted below. All containers are received at the field office located on Park Place. Before containers are used by field crews, a specified number of containers are pulled out for delivery to the HHD-BLS Lab where all QC checks and documentation are performed. The HHD-BLS Lab OAO reviews and tracks the results of all QC testing.

- Pre-cleaned, plastic, disposable sample containers are used for conventional parameters.
- Sterile, sealed, 120 or 250 mL plastic, disposable bottles with sodium thiosulfate tablet added, are used for the microbiological samples.
- Pre-cleaned, plastic, disposable sample containers for the TKN samples are provided by H-GAC's contract lab, Eastex Environmental Lab.
- When preservation is required for specific samples, the preservative is added to the container in the field-by-field personnel immediately after the samples are collected.

<u>City of Houston - Drinking Water Operations (DWO)</u> **and** <u>San Jacinto River Authority - Lake Conroe samples</u> All disposable sample containers are purchased by the DWO Lab except as noted below. Each lab cited below performs and tracks all required QC procedures for all bottles they purchase. SJRA-Lake Conroe samples are analyzed by the City of Houston Drinking Water Operations Lab (DWO).

- Sterile, sealed, 120 mL plastic, disposable bottles with sodium thiosulfate added, are used for bacteriological samples.
- Plastic, re-useable sample containers are used for most conventional parameters.
- Brown glass bottles are used to collect total phosphorus samples. These containers are thoroughly cleaned for re-use. See washing procedure following this list.
- Brown, polyethylene, 4-liter cubitainers are used routinely for chlorophyll-*a* samples and are provided by H-GAC's contract lab, Eastex.
- Pre-cleaned, plastic, disposable sample containers for the TKN samples are provided by H-GAC's contract lab, Eastex Environmental Lab.
- When preservation is required for ammonia samples, the bottles are pre-acidified at the office. Bottles are never filled by dipping. Rather, bottles are filled by pouring from a sample collection container that has been pre-rinsed 3 times at each monitoring location.

DWO container washing procedures (excluding bacteria bottles): The bottles are sent through a mechanical wash cycle followed by an acid rinse. The procedure is as follows: The bottles are placed in a dish washing machine where it goes through a pre-wash cycle with distilled water, a wash cycle with phosphate-free soap, a deionized water (DI) rinse cycle, then an acid rinse cycle. Next, the bottles are rinsed with DI water several times making sure there is at least a three (3) volume exchange of water. Lastly, the bottles are air dried. Afterwards, the bottles are sealed prior to storage for their next use.

San Jacinto River Authority – The Woodlands samples

Eastex Environmental Lab is the contract lab for samples collected from The Woodlands. The lab performs and tracks required QC procedures for all bottles purchased.

- Pre-cleaned, plastic, disposable sample containers are used for conventional parameters.
- Sterile, sealed, 120 mL plastic, disposable bottles with a sodium thiosulfate tablet added, are used for bacteriological samples.
- Brown, polyethylene, 4-liter cubitainers are used for chlorophyll-*a* samples.
- When preservation is required for a particular parameter, the containers are pre-acidified by the lab before being given to field personnel or acid is added to bottles by field personnel before going to field. Sample containers are filled by pouring from triple rinsed, plastic pitcher.
- Pre-cleaned, plastic, disposable sample containers for the TKN samples are provided by H-GAC's contract lab, Eastex Environmental Lab.

Environmental Institute of Houston (EIH)

All sample containers are provided to H-GAC by their contract lab, Eastex. The lab performs and tracks required QC procedures for all bottles purchased.

- Pre-cleaned, plastic, disposable sample containers are used for conventional parameters.
- Sterile, sealed, 120 mL plastic, disposable bottles with a sodium thiosulfate tablet added, are used for bacteriological samples.
- Brown, polyethylene, 4-liter cubitainers are used for chlorophyll-*a* samples and are provided by H-GAC's contract lab, Eastex
- When preservation is required for specific samples, the acid is added to the container in the field-by-field personnel immediately after samples are collected. The other parameter preservations are completed in the lab.

The <u>TRIES Analytical Lab</u> provides all sample containers for sample collection. The lab performs and tracks required QC procedures for all bottles purchased.

- Pre-cleaned, plastic, reusable sample containers are used for conventional parameters.
- Sterile, sealed, 120 mL or 250 mL plastic, disposable bottles with a sodium thiosulfate tablet added, are used for bacteriological samples.
- Pre-cleaned, plastic, disposable sample containers for the TKN samples are also provided by H-GAC's contract lab, Eastex Environmental Lab.
- When preservation is required for specific samples, the acid is added to the container in the field-by-field personnel immediately after samples are collected.

TRIES container washing procedures (excluding bacteria bottles): The bottles are sent through a mechanical wash cycle. The procedure is as follows: The bottles are placed in a dish washing machine where it goes through a pre-wash cycle with distilled water, a wash cycle with phosphate-free soap, and then a deionized water (DI) rinse cycle. Next, the bottles are allowed to air dry. Afterwards, the bottles are sealed prior to storage for their next use.

Processes to Prevent Contamination

SWQM Procedures outline the necessary steps to prevent contamination of samples, including: direct collection into sample containers. Several local partners collect samples from a bridge and must use the bucket method. All those partners practice the triple rinse procedure with the buckets to eliminate or at least minimize the chance of carry-over from one site to the next.

Documentation of Field Sampling Activities

Field sampling activities are documented on field data sheets as presented in Appendix D. Flow worksheets, aquatic life use monitoring checklists, habitat assessment forms, field biological assessment forms, and records of bacteriological analyses (if applicable) are part of the field data record. The following will be recorded for all visits:

- Station ID
- Sampling Date
- Location
- Sampling Depth
- Sampling Time
- Sample Collector's name
- Values for all field parameters collected

Additional notes containing detailed observational data not captured by field parameters may include:

- Water appearance
- Weather
- Biological activity
- Recreational activity
- Unusual odors
- Pertinent observations related to water quality or stream uses
- Watershed or instream activities
- Specific sample information
- Missing parameters

Recording Data

For the purposes of this section and subsequent sections, all field and laboratory personnel follow the basic rules for recording information as documented below:

- Write legibly, in indelible ink
- Make changes by crossing out original entries with a single line strike-out, entering the changes, and
 initialing and dating the corrections.
- Close-out incomplete pages with an initialed and dated diagonal line.

Sampling Method Requirements or Sampling Process Design Deficiencies, and Corrective Action

Examples of sampling method requirements or sample design deficiencies include but are not limited to such things as inadequate sample volume due to spillage or container leaks, failure to preserve samples appropriately, contamination of a sample bottle during collection, storage temperature and holding time exceedance, sampling at the wrong site, etc. Any deviations from the QAPP, SWQM Procedures, or appropriate sampling procedures may invalidate data, and require documented corrective action. Corrective action may include for samples to be discarded and re-collected. It is the responsibility of the H-GAC Project Manager, in consultation with the H-GAC QAO, to ensure that the actions and resolutions to the problems are documented and that records are maintained in accordance with this QAPP. In addition, these actions and resolutions will be conveyed to the CRP Project Manager both verbally and in writing in the project progress reports and by completion of a CAP.

The definition of and process for handling deficiencies and corrective action are defined in Section C1.

B3 Sample Handling and Custody Sample Tracking

Proper sample handling and custody procedures ensure the custody and integrity of samples beginning at the time of sampling and continuing through transport, sample receipt, preparation, and analysis.

A sample is in custody if it is in actual physical possession or in a secured area that is restricted to authorized personnel. The Chain of Custody (COC) form is a record that documents the possession of the samples from the time of collection to receipt in the laboratory. The following information concerning the sample is recorded on the COC form (See Appendix E). The following list of items matches the COC form in Appendix E.

- Date and time of collection
- Site identification
- Sample matrix
- Number of containers
- Preservative used
- Was the sample filtered in field?
- Analyses required
- Name of collector
- Custody transfer signatures and dates and time of transfer
- Bill of lading, if applicable

Sample Labeling

Samples from the field are labeled on the container, or on a label, with an indelible marker. Label information includes:

- Site identification
- Date and time of collection
- Preservative added, if applicable
- Indication of field-filtration for metals, as applicable
- Sample type (i.e., analyses) to be performed

Sample Handling

Upon collection, all local partners immediately immerse their samples in coolers containing ice. If a temperature blank is carried (it is not required), it shall be placed on top of the samples instead of buried in the ice. Samples are transported to each local partner's lab by the person who collected the samples or, in the case of EIH, H-GAC, and SJRA samples from The Woodlands area, the samples are transferred to a lab courier who signs the chain of custody form and transports the samples to the lab. After the samples arrive, the lab personnel taking custody of samples will verify the samples are "in the process" of cooling to <6 °C before signing the COC. Internal sample handling, custody, and storage procedures for each of the laboratories supporting H-GAC's monitoring entities are described in the SOPs and Quality Manuals (QM) and are available to H-GAC upon request. For TKN and chlorophyll *a* samples, all samples are transferred to a lab courier who signs the chain of custody form and transports the samples to the contract lab for processing and analysis. References for each local partner's field and lab sample handling procedure are listed in the following table.

Table B3.1. Sample Handling References for Local Monitoring Partners.

Monitoring Entity	Reference to Sample Handling
Houston-Galveston Area Council	H-GAC's Standard Operating Procedures (SOP) Manual for Conducting Surface Water Quality Monitoring references the most current <i>TCEQ Surface Water Quality Monitoring Procedures Volume 1 & 2</i> plus specific SOP's pertaining to H-GAC monitoring activities only.
	Eastex Environmental Laboratory QM, most current version, covers samples relinquished to the lab.
Harris County Pollution Control Services	Harris County Pollution Control Services Department Standard Operating Procedure – <i>Procedures for Sample Custody, Login and Tracking Using Sample Master LIMS</i> . Most current version.
City of Houston, Health Department	HHD-BLS Environmental Laboratory Services QM, Section 22 – Sample Management, most current version.
City of Houston, Drinking Water Operations Laboratory And San Jacinto River Authority – Lake Conroe samples	DWO - Environmental Sampling SOP, most recent revision.
San Jacinto River Authority – The Woodlands area samples	SJRA's Sample Custody Standard Operating Procedure, October 2007. Eastex Environmental Laboratory QM, most current version, covers samples relinquished to the lab.

Monitoring Entity	Reference to Sample Handling	
Environmental Institute of Houston	EIH's Standard Operating Procedures (SOP) Manual for Conducting Surface Water Quality Monitoring references the most current <i>TCEQ Surface Water Quality Monitoring Procedures Volume 1 & 2</i> plus additional/specific SOP's pertaining to EIH's monitoring activities only.	
	Eastex Environmental Laboratory QM, most current version, covers samples relinquished to the lab.	
Texas Research Institute for	TRIES's Standard Operating Procedures (SOP) Manual for Conducting Surface Water Quality Monitoring references the most current <i>TCEQ Surface Water Quality Monitoring Procedures Volume 1</i> plus specific SOP's pertaining to TRIES monitoring activities only.	
Environmental Studies	TRIES Laboratory QM, or most current version, covers the handling of all samples analyzed.	
	Eastex Environmental Laboratory QM, most current version, covers samples relinquished to the lab.	

Sample Tracking Procedure Deficiencies and Corrective Action

All deficiencies associated with COC procedures, as described in this QAPP, are immediately reported to the H-GAC Project Manager. These include such items as delays in transfer resulting in holding time violations; violations of sample preservation requirements; incomplete documentation, including signatures; possible tampering of samples; broken or spilled samples, etc. The H-GAC Project Manager in consultation with the H-GAC QAO will determine if the procedural violation may have compromised the validity of the resulting data. Any failures that have reasonable potential to compromise data validity will invalidate data and the sampling event should be repeated. The resolution of the situation will be reported to the TCEQ CRP Project Manager in the project progress report. CAPs will be prepared by the Lead Organization QAO and submitted to TCEQ CRP Project Manager along with project progress report.

The definition of and process for handling deficiencies and corrective action are defined in Section C1.

B4 Analytical Methods

The analytical methods, associated matrices, and performing laboratories are listed in Appendix A. The authority for analysis methodologies under CRP is derived from the 30 Tex. Admin. Code Ch. 307, in that data generally are generated for comparison to those standards and/or criteria. The Texas Surface Water Quality Standards state "Procedures for laboratory analysis must be in accordance with the most recently published edition of the book entitled Standard Methods for the Examination of Water and Wastewater, the TCEQ Surface Water Quality Monitoring Procedures as amended, 40 CFR 136, or other reliable procedures acceptable to the TCEQ, and in accordance with chapter 25 of this title."

Laboratories collecting data under this QAPP must be NELAP-accredited in accordance with 30 TAC Chapter 25. Copies of laboratory QMs and SOPs shall be made available for review by H-GAC and the TCEQ.

Standards Traceability

All standards used in the field and laboratory are traceable to certified reference materials. Standards preparation is fully documented and maintained in a standards log book. Each documentation includes information concerning the standard identification, starting materials, including concentration, amount used and lot number; date prepared, expiration date and preparer's initials/signature. The reagent bottle is labeled in a way that will trace the reagent back to preparation.

Analytical Method Deficiencies and Corrective Actions

Deficiencies in field and laboratory measurement systems involve, but are not limited to such things as instrument malfunctions, failures in calibration, blank contamination, quality control samples outside QAPP-defined limits, etc. In many cases, the field technician or lab analyst will be able to correct the problem. If the problem is resolvable by the field technician or lab analyst, then they will document the problem on the field data sheet or laboratory record and complete the analysis. If the problem is not resolvable, then it is conveyed to the applicable laboratory supervisor, who will make the determination and notify the H-GAC QAO if the problem compromises sample results. If the analytical system failure may compromise the sample results, the resulting data will not be reported to the TCEQ. The nature and disposition of the problem is reported on the data report which is sent to the H-GAC Project Manager. The H-GAC Project Manager or designee will include this information in the CAP and submit with the Progress Report which is sent to the TCEQ CRP Project Manager.

The definition of and process for handling deficiencies and corrective action are defined in Section C1.

The TCEQ has determined that analyses associated with qualifier codes (e.g., "holding time exceedance," "sample received unpreserved," "estimated value") may have unacceptable measurement uncertainty associated with them. This will immediately disqualify analyses from submittal to SWQMIS. Therefore, data with these types of problems should not be reported to the TCEQ. Additionally, any data collected or analyzed by means other than those stated in the QAPP, or data suspect for any reason should not be submitted for loading and storage in SWQMIS. However, when data is lost, its absence will be described in the data summary report submitted with the corresponding data set, and a corrective action plan (as described in section C1) may be necessary.

B5 Quality Control

Sampling Quality Control Requirements and Acceptability Criteria

The minimum field QC requirements, and program-specific laboratory QC requirements, are outlined in SWQM Procedures.

Laboratory Measurement Quality Control Requirements and Acceptability Criteria

Batch

A batch is defined as environmental samples that are prepared and/or analyzed together with the same process and personnel, using the same lot(s) of reagents. A preparation batch is composed of one to 20 environmental samples of the same NELAP-defined matrix, meeting the above-mentioned criteria and with a maximum time between the start of processing of the first and last sample in the batch to be 24 hours. An analytical batch is composed of prepared environmental samples (extract, digestates, or concentrates) which are analyzed together as a group. An analytical batch can include prepared samples originating from various environmental matrices and can exceed 20 samples.

Method Specific QC requirements

QC samples, other than those specified later in this section (e.g., sample duplicates, surrogates, internal standards, continuing calibration samples, interference check samples, positive control, negative control, and media blank), are run as specified in the methods and in SWQM Procedures. The requirements for these samples, their acceptance criteria or instructions for establishing criteria, and corrective actions are method specific.

Detailed laboratory QC requirements and corrective action procedures are contained within the individual laboratory quality manuals (QMs). The minimum requirements that all participants abide by are stated below.

Comparison Counting

For routine bacteriological samples, repeat counts on one or more positive samples are required, at least monthly. If possible, the analyst will compare counts with another analyst who also performs the analysis. Replicate counts by the same analyst should agree within 5 percent, and those between analysts should agree within 10 percent. The analyst(s) will record the results.

Limit of Quantitation (LOQ)

The laboratory will analyze a calibration standard (if applicable) at the LOQ published in Appendix A of this QAPP on each day calibrations are performed. In addition, an LOQ check sample will be analyzed with each analytical batch. Calibrations including the standard at the LOQ listed in Appendix A will meet the calibration requirements of the analytical method, or corrective action will be implemented.

LOQ Check Sample

An LOQ check sample consists of a sample matrix (e.g., deionized water, sand, commercially available tissue) free from the analytes of interest spiked with verified known amounts of analytes or a material containing known and verified amounts of analytes. It is used to establish intra-laboratory bias to assess the performance of the measurement system at the lower limits of analysis. The LOQ check sample is spiked into the sample matrix at a level less than or equal to the LOQ published in Appendix A of this QAPP, for each analyte for each analytical batch of CRP samples run. If it is determined that samples have exceeded the high range of the calibration curve, samples should be diluted or run on another curve. For diluted or high concentration samples run on batches with calibration curves that do not include the LOQ published in Appendix A of this QAPP, a check sample will be run at the low end of the calibration curve.

The LOQ check sample is carried through the complete preparation and analytical process. LOQ check samples are run at a rate of one per analytical batch.

The percent recovery of the LOQ check sample is calculated using the following equation in which R is percent recovery, R is the sample result, and R is the reference concentration for the check sample:

$$\%R = \frac{S_R}{S_A} \times 100$$

Measurement performance specifications are used to determine the acceptability of LOQ Check Sample analyses as specified in Appendix A of this QAPP.

Laboratory Control Sample (LCS)

An LCS consists of a sample matrix (e.g., deionized water, sand, commercially available tissue) free from the analytes of interest spiked with verified known amounts of analytes or a material containing known and verified amounts of analytes. It is used to establish intra-laboratory bias to assess the performance of the measurement system. The LCS is spiked into the sample matrix at a level less than or near the midpoint of the calibration for each analyte. In cases of test methods with very long lists of analytes, LCSs are prepared with all the target analytes and not just a representative number, except in cases of organic analytes with multipeak responses.

The LCS is carried through the complete preparation and analytical process and is performed at a rate of one per preparation batch.

Results of LCSs are calculated by percent recovery (%R), which is defined as 100 times the measured concentration, divided by the true concentration of the spiked sample.

The following formula is used to calculate percent recovery, where R is percent recovery; R is the measured result; and R is the true result:

$$\%R = \frac{S_R}{S_A} \times 100$$

Measurement performance specifications are used to determine the acceptability of LCS analyses as specified in Appendix A.

Laboratory Duplicates

A laboratory duplicate is an aliquot taken from the same container as an original sample under laboratory conditions and processed and analyzed independently. A laboratory duplicate is achieved by preparing 2 separate aliquots of a sample, LCS, or matrix spike. Both samples are carried through the entire preparation and analytical process. Laboratory duplicates are used to assess precision and are performed at a rate of one per preparation batch.

For most parameters except bacteria, precision is evaluated using the relative percent difference (RPD) between duplicate results as defined by 100 times the difference (range) of each duplicate set, divided by the average value (mean) of the set. For duplicate results, X_1 and X_2 , the RPD is calculated from the following equation:

$$RPD = \frac{|X_1 - X_2|}{\left(\frac{X_1 + X_2}{2}\right)} \times 100$$

If the precision criterion is exceeded, the data are not acceptable for use under this project and are not reported to TCEQ. Results from all samples associated with that failed duplicate (usually a maximum of 10 samples) are considered to have excessive analytical variability and are qualified as not meeting project QC requirements.

For bacteriological parameters, precision is evaluated using the results from laboratory duplicates. Bacteriological duplicates are analyzed at a 10% frequency (or once per preparation batch, whichever is more frequent). Sufficient volume should be collected to analyze laboratory duplicates from the same sample container.

The base-10 logarithms of the results from the original sample and its duplicate are calculated. The absolute value of the difference between the two base-10 logarithms is calculated and compared to the precision criterion in Appendix A.

$$|\text{Log A} - \text{Log B}| = \text{Log Range}$$

If the difference in logarithms is greater than the precision criterion, the data are not acceptable for use under this project and are not reported to TCEQ. Results from all samples associated with that failed duplicate (usually a maximum of 10 samples) are considered to have excessive analytical variability and are qualified as not meeting project QC requirements.

The precision criterion in Appendix A for bacteriological duplicates applies only to samples with concentrations > 10 MPN.

Matrix spike (MS)

Matrix spikes are prepared by adding a known quantity of target analyte to a specified amount of matrix sample for which an independent estimate of target analyte concentration is available.

Matrix spikes indicate the effect of the sample on the precision and accuracy of the results generated using the selected method. Matrix-specific QC samples indicate the effect of the sample matrix on the precision and accuracy of the results generated using the selected method. The information from these controls is sample/matrix specific and would not normally be used to determine the validity of the entire batch. The frequency of matrix spikes is specified by the analytical method, or a minimum of one per preparation batch, whichever is greater. To the extent possible, matrix spikes prepared and analyzed over the course of the project should be performed on samples from different sites.

The components to be spiked shall be as specified by the mandated analytical method. The results from matrix spikes are primarily designed to assess the validity of analytical results in a given matrix and are expressed as percent recovery (%R).

The percent recovery of the matrix spike is calculated using the following equation, where R is percent recovery, S_{SR} is the concentration measured in the matrix spike, S_R is the concentration in the parent sample, and S_A is the concentration of analyte that was added:

$$\%R = \frac{S_{SR} - S_R}{S_A} \times 100$$

Matrix spike recoveries are compared to the acceptance criteria published in the mandated test method. If the matrix spike results are outside established criteria, the data for the analyte that failed in the parent sample is not acceptable for use under this project and will not be reported to TCEQ. The result from the parent sample associated with that failed matrix spike will be considered to have excessive analytical variability and will be qualified by the laboratory as not meeting project QC requirements. Depending on the similarities in composition of the samples in the batch, the H-GAC may consider excluding all of the results in the batch related to the analyte that failed recovery.

Measurement performance specifications for matrix spikes for each partner lab are discussed below.

- <u>Eastex</u> uses matrix spike recovery limits of 75-125 for parameters where a spike solution is available. These recoveries are monitored with QC charts to help determine interferences or detect trends. Matrix spikes that fail to meet these guidelines are reanalyzed, if possible. An alternate sample may be used to help determine whether the problem was specific to that sample. If matrix spikes are not achievable within 75-125 % recovery then this recovery is flagged as exceeding the control limit on the QC report.
- <u>Harris County Pollution Control Services (HCPCS)</u> The measurement performance specification for matrix spikes is recovery between 75 and 125 percent. If a spike recovery is outside this range, the result is qualified in the QC narrative contained in the data submittal checklist. In addition, the laboratory applies control chart techniques to monitor performance, and establishes updated internal control limits for matrix spike recovery on an annual basis.
- The City of Houston, HHD BLS Lab has a matrix spike recovery requirement of 80-120 percent unless specifically stated for the parameter. A spike that falls outside laboratory limits is reanalyzed. If the spike fails a second time, another sample within the same set is prepared as a spike and analyzed. When several different matrix spikes fall outside stated limits, matrix interference is likely. If the required matrix spike recovery is not met, the data affected are qualified and flagged as exceeding control limits.
- The City of Houston, DWO Lab The recovery of matrix spikes for the samples analyzed in DWO laboratory is between 80 to 120 percent. If a spike recovery is outside this range, the result is qualified in the QC narrative contained in the data submittal checklist. In addition, the laboratory applies control chart techniques to monitor performance.
- <u>TRIES Lab</u> uses matrix spike recovery limits of 75-125 percent which are published in the mandated test method where a spike solution is required. Matrix spikes that fail to meet these guidelines are reanalyzed, if possible, or an alternate sample may be used to help determine whether the problem was specific to that sample. If matrix spikes are not achievable within method acceptance criteria, the data are reported with appropriate data qualifying codes on the analytical report. Control Charts are monitored for laboratory performance.

Method blank

A method blank is a sample of matrix similar to the batch of associated samples (when available) that is free from the analytes of interest and is processed simultaneously with and under the same conditions as the samples through all steps of the analytical procedures, and in which no target analytes or interferences are present at concentrations that impact the analytical results for sample analyses. The method blank is used to document contamination from the analytical process. The analysis of method blanks should yield values less than the LOQ. For very high-level analyses, the blank value should be less than 5% of the lowest value of the batch, or corrective action will be implemented. Samples associated with a contaminated blank shall be evaluated as to the best corrective action for the samples (e.g. reprocessing, data qualifying codes). In all cases the corrective action must be documented.

The method blank shall be analyzed at a minimum of one per preparation batch. In those instances, for which no separate preparation method is used, the batch shall be defined as environmental samples that are analyzed together with the same method and personnel, using the same lots of reagents, not to exceed the analysis of 20 environmental samples.

Quality Control or Acceptability Requirements Deficiencies and Corrective Actions

Sampling QC excursions are evaluated by the H-GAC Project Manager, in consultation with the H-GAC QAO. If the differences in sample results are used to assess the entire sampling process, including environmental variability, the arbitrary rejection of results based on pre-determined limits is not practical. Therefore, the professional judgment of the H-GAC Project Manager, QAO and Data Manager will be relied upon in evaluating results. Notations of blank contamination are noted in the data summaries that accompany data deliverables.

Laboratory measurement quality control failures are evaluated by the laboratory staff. The disposition of such failures and the nature and disposition of the failure is reported to the Laboratory QAO. The Laboratory QAO will discuss the failure with the H-GAC Project Manager, QAO and/or Data Manager. If applicable, the H-GAC Project Manager, QAO and/or Data Manager will include this information in a CAP and submit with the Progress Report which is sent to the TCEQ CRP Project Manager.

The definition of and process for handling deficiencies and corrective action are defined in Section C1.

Additionally, in accordance with CRP requirements and the TNI Standard (Volume 1, Module 2, Section 4.5, Subcontracting of Environmental Tests) when a laboratory that is a signatory of this QAPP finds it necessary and/or advantageous to subcontract analyses, the laboratory that is the signatory on this QAPP must ensure that the subcontracting laboratory is NELAP-accredited (when required) and understands and follows the QA/QC requirements included in this QAPP. This includes that the sub-contracting laboratory utilize the same reporting limits as the signatory laboratory and performs all required quality control analysis outlined in this QAPP. The signatory laboratory is also responsible for quality assurance of the data prior to delivering it to the H-GAC, including review of all applicable QC samples related to CRP data. As stated in section 4.5.5 of the TNI Standard, the laboratory performing the subcontracted work shall be indicated in the final report and the signatory laboratory shall make a copy of the subcontractor's report available to the client (H-GAC) when requested.

B6 Instrument/Equipment Testing, Inspection, and Maintenance

All sampling equipment testing, and maintenance requirements are detailed in the SWQM Procedures. Field supervisor or designee will ensure sampling equipment is inspected and tested upon receipt and is assured appropriate for use. Equipment records are kept on all field equipment and a supply of critical spare parts is maintained.

All laboratory tools, gauges, instrument, and equipment testing, and maintenance requirements are contained within laboratory QM(s).

B7 Instrument Calibration and Frequency

Field equipment calibration requirements are contained in the SWQM Procedures. Post-calibration check error limits and the disposition resulting from errors are adhered to. Data collected from field instruments that do not meet the post-calibration check error limits specified in the SWQM Procedures will not be submitted for inclusion into SWQMIS.

Detailed laboratory calibrations are contained within the QM(s).

B8 Inspection/Acceptance of Supplies and Consumables

There is a reference in each of the laboratory QMs or QMP for accepting all field supplies and consumables being approved using the same procedures as laboratory-related supplies and consumables. All the labs check multiple containers from each case or 'Lot' of bottles received to confirm all containers are properly cleaned before releasing them to the field staff for use in collecting samples. In short, each tested container is filled with H-GAC FY24-25 Multi-Basin QAPP

Page 57
August 23, 2023

deionized water (DI), shaken to disperse any residual contamination that might be present within the bottle, then, that same DI water is tested as blanks for each parameter to confirm no contamination is present. All the labs also track each of the cases/Lots to ensure only containers confirmed to be clean are used. Refer to the laboratory QMs or QMPs for inspection/acceptance process for all supplies and consumables.

B9 Acquired Data

Non-directly measured data, secondary data, or acquired data involves the use of data collected under another project and collected with a different intended use than this project. The acquired data still meets the quality requirements of this project and is defined below. The following data source(s) will be used for this project:

<u>USGS</u> gage station data will be used throughout this project to aid in determining gage height and flow. Rigorous QA checks are completed on gage data by the USGS and the data are approved by the USGS and permanently stored at the USGS. This data will be submitted to the TCEQ under parameter code 00061 Flow, Instantaneous or parameter code 74069 Flow Estimate depending on the proximity of the monitoring station to the USGS gage station.

Reservoir stage data are collected every day from the USGS, International Boundary and Water Commission (IBWC), and the United States Army Corps of Engineers (USACE) websites. These data are preliminary and subject to revision. The Texas Water Development Board (TWDB) derives reservoir storage (in acre-feet) from these stage data (elevation in feet above mean sea level), by using the latest rating curve datasets available. These data are published at the TWDB website at http://waterdatafortexas.org/reservoirs/statewide. Information about measurement methodology can be found on the TWDB website. These data will be submitted to the TCEQ under parameter code 00052 Reservoir Stage and parameter code 00053 Reservoir Percent Full.

<u>Rainfall data</u> will be acquired from multiple sources to report parameter code 72053 (Days Since Precipitation Event) with each set of water quality data submitted to TCEQ. Each partner will use the internet source that best addresses the rainfall events occurring closest to but upstream of or within the drainage area affecting their various monitoring stations. Historical rainfall data is accessible on these web sites to determine the correct value for parameter 72053, "Days since precipitation event". These sites include:

- National Oceanic and Atmospheric Administration's (NOAA's) National Climatic Data Center (NCDC)
 (http://www.ncdc.noaa.gov/). The NCDC is responsible for preserving, monitoring, assessing, and providing public access to the nation's climate and historical weather data and information
- Weather Underground (http://www.wunderground.com/) which collects and maintains precipitation data from numerous sources in the selected area
- The Harris County Flood Control District (HCFCD) operates a Flood Warning System (FWS) (http://www.harriscountyfws.org/) which measures rainfall amounts and monitors water levels in bayous and major streams on a real-time basis to inform the public of dangerous weather conditions. The system relies on 133 gage stations strategically placed on bayous and their tributaries throughout the greater Harris County area.
- The USGS National Water Information System (NWIS) web interface can also be used to determine when a significant change in flow occurred at the various flow gages operated around the greater Houston region. The web site http://waterdata.usgs.gov/tx/nwis/current/?type=flow can display discharge data in graph or tabular format to determine days when runoff affected the stream.

B10 Data Management

Data Management Process

Data is received by H-GAC from all partners, including H-GAC's own data monitoring program. Each partner has a paragraph below which gives a brief description of their data submission process.

When data is submitted to H-GAC, the data is saved in "Raw Data" folders. When H-GAC begins to process the data, it is saved into a "Working Data" folder. By changing the folder in which the data is saved, H-GAC always

has the original data submittal in electronic format. Data is processed by H-GAC Data Manager and H-GAC's QAO before being submitted to TCEQ in the format specified in the SWQM Data Management Reference Guide, most recent version, for review by the TCEQ CRP Program Manager. H-GAC's full data procedure is described in Appendix H – Data Management Process.

• <u>H-GAC's</u> field sheets are kept in a three-ring binder at H-GAC office. The calibration sheets, field sheets, and COCs are reviewed by the QAO or designee. If there are nonconformances such as failed calibration, the QAO or designee writes instructions in a different colored ink on the related field sheet regarding data entry. Then the instructions are initialed and dated.

Electronic data from datasondes and flow-measurement devices are downloaded into a raw data folder. These electronic files are saved as EXCEL files for later processing or proprietary formats developed by manufacturers of the flow measurement devices. Field data are entered in an ACCESS database using a 'field sheet form' by H-GAC staff and saved in a secured network drive in a 'raw data' folder as well. A second H-GAC employee reviews the input data for accuracy and completeness. No changes are made to that 'raw' data files once this recheck is finished and the files are saved. Next, the reviewed 'raw' data is saved into the 'working' data folder for additional processing. Both folders are backed by H-GAC Data Services on a regular basis. The new 'working' data is also converted into EXCEL format to await receiving lab data for merging. Sample analysis is performed by Eastex Environmental Laboratory and submitted to H-GAC in EXCEL format. The data is saved in a 'raw data' folder first, then merged with corresponding dates of field sampling runs and saved in the 'working data' folder. Datasonde data are also copied into the appropriate combined EXCEL file.

The new 'working' data EXCEL worksheet is loaded into statistical analysis software (SAS) where H-GAC's Data Manager rechecks the new data file for accuracy, completeness, formatting, outliers, corrections, verification, and validation. Once completed, data is saved in an ACCESS data base again where H-GAC's QAO or designee reviews the data manually for completeness, formatting, outliers, verification, and validation a second time.

SAS code has been written to process both the field and laboratory datasets. Following initial SAS processing and investigation of flagged records, a draft Data Summary is compiled by H-GAC DM. Details of any data changes are documented in the Data Summary. All SAS output is saved on secured network drives that are backed up regularly by Data Services staff. The DM provides the QAO with the draft Data Summary for review. H-GAC QAO review of the datasets and the Data Summary is documented and provided to H-GAC DM for further investigation, verification, or change. This record of the QAO review is retained with the data package. See Appendix H for H-GAC's Data Management Process for greater details.

- Harris County Pollution Control Services (HCPCS) submits EXCEL spreadsheets to H-GAC containing laboratory and field data. The data are exported from the department database and spreadsheets are reviewed by the Lab & Field QAO and/or CRP Data Manager (or designee) for accuracy, consistency, and reasonableness (as indicated by inter-parameter correlations, historical parameter results, and screening values established by the TCEQ). Documented non-conformances from QAPP, SOP, and HCPCS Quality Manual requirements that may impact the data and problems encountered in collection or analysis of the samples are evaluated and addressed in the data submittal checklist. A Data Review Checklist is generated for each data packet. The checklist is prepared by the QAO/CRP Data Manager and reviewed and approved by the Lab Manager (or designee), and CRP Field QAO or a representative of the field collection team.
- The <u>City of Houston HHD</u> field personnel and CRP Data Manager enter field and laboratory data into an ACCESS database from field sheets, COCs, and lab reports received from the Lab QAO. Printouts of any data from field equipment memory are printed out to be saved with field forms by CRP Data Manager at the Park Avenue office where field staff are housed. The data manager or designee reviews all data entries for accuracy then checks for outliers. A Data Review Checklist is generated for each data packet. Data is then submitted to the HHD-BLS Lab QAO for additional review before being sent back to the HHD CRP Data Manager and submitted to H-GAC via Sharefile. The laboratory data management process is explained in the lab's QM Section 23.8 Data Review.

• <u>City of Houston DWO & Lake Houston</u> field personnel turn in samples, the chain of custody and field form to the sample receiver in the lab. The Sample Administrator enters some of the field data provided by sample collectors on COCs into the BTLIMS. Samples are analyzed by various chemists according to the required method and results are entered by the chemists performing each analysis, then reviewed by another chemist and the Data Manager for accuracy, validity, QA/QC requirements, and finally validated in BTLIMS by Lab QA Manager. The laboratory manager also checks the accuracy of these data entry into BTLIMS. These tables are exported from the BTLIMS. The checklist for lab data accuracy, completeness, reasonableness, and outliers is created and reviewed by the Lab QA Manager. The lab submits EXCEL spreadsheets to H-GAC containing laboratory data only. Documented nonconformances from QAPP, SOP, and DWO Quality Manual requirements that may impact the data and problems encountered in collection or analysis of the samples are evaluated and addressed in the data review checklist.

The CRP Field Supervisor and/or CRP Data Manager or designee inputs field data into an EXCEL worksheet. The data is reviewed for accuracy and completeness by a different person. A Data Review Checklist is generated for each data packet. The CRP Field supervisor completes a Data Review Checklist section for that field dataset before it is submitted to H-GAC independent of the lab data.

- SJRA collects samples from Lake Conroe and the Lake Woodlands watershed. Lake Conroe samples are submitted to the City of Houston DWO Lab for analysis (see previous paragraph for lab data handling) and the Woodlands samples are sent to Eastex Laboratory. Electronic data files from the field datasondes are sent directly to H-GAC's Data Manager for import during data processing. Additional field data are input to an ACCESS database by SJRA's Data Manager, where it is reviewed, formatted, and exported in EXCEL format for submission to H-GAC. H-GAC's Data Manager merges the field data with the profile data and rechecks for outliers and formatting. H-GAC's QAO checks the data for accuracy and reasonableness. SJRA keeps the original field sheets. Copies of field sheets, COCs, calibration logs, and a Data Review Checklist are sent to H-GAC with every data submittal for Lake Conroe and The Woodlands samples. Eastex Lab sends electronic lab data results to SJRA and H-GAC at the same time for the H-GAC data manager to merge with field data.
- The EIH field staff enter field data collected by their program into an EXCEL spreadsheet and a second staff member reviews the entered data for accuracy and completeness. All supporting QA data is input to spreadsheets as well. The EIH CRP QAO and the EIH CRP Data Manager review 50-100% of the data for accuracy, completeness, and reasonableness. A Data Review checklist is generated while data is being reviewed. Then, it is submitted to H-GAC along with electronic data. H-GAC downloads scanned field sheets and COCs from the EIH FTP site for review during data processing. H-GAC's Data Manager receives electronic data files from Eastex Lab and merges lab data with field data during data processing, prior to review and submission to TCEQ.
- TRIES lab QAO submits all final lab data to the TRIES Data Manager who merges the lab and field data together. The data manager completes all data entry into an Excel spreadsheet. Any supporting QA data is input to a separate spreadsheet in the same workbook. The TRIES field QAO or designee, TRIES Lab QAO and the TRIES CRP Data Manager review more than 10% of data for accuracy, completeness, and reasonableness. A Data Review Checklist is completed by the data manager and submitted to the TRIES CRP Project Manager for final approval. The data manager then submits the Excel spreadsheet for both the field and lab data along with scanned hard copies of the field sheets and COCs to H-GAC. If necessary, analytes analyzed by Eastex Laboratory are submitted directly to H-GAC for processing.
- <u>Eastex Environmental Lab</u> (Eastex) analyses water quality samples for H-GAC, EIH, SJRA-Lake Woodlands, and sometimes TRIES. Eastex also analyses TKN and chlorophyll samples for all local partners. Eastex is contacted to pick up samples and conducts the analyses listed on the COC. The raw data is reviewed by the Technical Director and then entered into LIMS by analysts and data entry personnel. The Data Manager reviews data entry into LIMS for accuracy, then validates the data after reviewing for validity & QA/QC requirements. The Technical Director then further reviews the final data packet and completes the Data Review checklist before emailing to H-GAC.

Data Dictionary

Terminology and field descriptions are included in the 2019 DMRG, or most recent version. A table outlining the entities that will be used when submitting data under this QAPP is included below for the purpose of verifying which entity codes are included in this QAPP.

Table B10.1 -Sampling Entity Data Submission Codes

Name of Monitoring Entity	Tag	Submitting	Collecting
	Prefix	Entity	Entity
Houston-Galveston Area Council	I	HG	HG
Harris County Pollution Control Services	I	HG	HC
City of Houston – Health Department	I	HG	НН
City of Houston – Drinking Water Operations	I	HG	HW
San Jacinto River Authority	I	HG	SJ
Environmental Institute of Houston – University of Houston Clear Lake	I	HG	UI
Texas Research Institute for Environmental Studies – Sam Houston State University	I	HG	TF

Data Errors and Loss

H-GAC stores original electronic data as "Raw Data" files. These files are saved in the original format and other than changing the name of a file, remains unchanged. Files that are changed prior to processing are saved in the "Working Data" folders. The "SAS Data Processing" network folder holds all input and output from SAS processing. The "Input" folder contains the file imported into SAS. An ACCESS database is produced during SAS processing for each dataset and exported to the "ACCESS" folder. The database contains multiple tables used to aid review of the data, identify possible problems, and document verification of outliers and changes to data that are flagged during processing. Text files in the format required by SWQMIS are exported during SAS processing to the "Output" folder. All changes, validation, and verification actions on the data are documented in a Data Review Summary Report which accompanies each data set submittal (Appendix G).

E-mails and communications with local partners/sub-tier participants are saved with archived emails and filed with the dataset in the G-drive folders to facilitate traceability of reported results to raw data.

Each partner has a paragraph below briefly discussing their data control mechanisms.

- <u>H-GAC</u> water samples are sent to <u>Eastex Lab</u> for analysis. (See Eastex lab details below.) Field data sheets are collected by the assigned staff for input to an ACCESS Database and are reviewed for outliers. H-GAC's QAO reviews the data for transcription accuracy and reasonableness after SAS processing. A Data Summary Sheet is prepared by the Data Manager after SAS processing for review by H-GAC's QAO and for submission to TCEQ with the text files.
- <u>Harris County Pollution Control Services (HCPCS)</u> Details of the mechanisms for review and correction of errors and preventing loss of data are described in the HCPCS Laboratory Services Quality Manual, (most current version). All field data sheets are given to the HCPCS CRP Field QAO who applies the same review, correction of errors, and prevention of loss of data as the lab QAO and CRP Data Manager. A Data Review Checklist is completed for each set of data submitted to H-GAC.
- <u>City of Houston HHD</u> Details of the HHD-BLS Lab protocols for data reductions and review are described in their Environmental Laboratory Services Quality Manual, Section 23, (most current version). All field data is gathered by the HHD Data Manager who inputs the data to their database,

checks all data for outliers and reasonableness. Then, the data is reviewed by a second individual for transcription accuracy. A Data Review Checklist is completed for each set of data submitted to H-GAC.

- <u>City of Houston DWO</u> Details of their Laboratory protocols for data reductions and review are described in their Quality Management Plan, Section 7, (most recent revision). All field data sheets are turned over at the Lake Houston office for data input to EXCEL spreadsheets. The DWO Data Manager reviews the data for outliers and accuracy. Then, the Field QAO or designee reviews the data for transcription accuracy and reasonableness. A Data Review Checklist is completed for each set of data submitted to H-GAC.
- San Jacinto River Authority Lake Conroe water samples are sent to DWO lab where all analyses are completed and results managed (See City of Houston DWO above). A copy of the field data sheet is sent to the lab. DWO CRP Lab Data Manager/Lab QA Manager or designee perform all data management for Lake Conroe lab data. SJRA inputs field data to an EXCEL spreadsheet and submits spreadsheet to H-GAC Data Manager along with scanned copies of field sheets, calibration forms, and COCs. Profile data from the Hydrolab Surveyor is downloaded to SJRA's data folders and saved in a raw data file and a working data file. The working data files are reviewed and reformatted as needed, then sent to H-GAC. A Data Review Checklist is completed by SJRA for field data while DWO provides the Data Review Checklist for the lab data.

The Woodlands samples are sent to Eastex Lab for analysis. (See Eastex Lab details below.) The Woodlands lab data results are managed by Eastex and sent to H-GAC directly by Eastex along with a Data Review Checklist for the same data. Information from the field data sheets are input to EXCEL spreadsheets by the SJRA Data Manager who also checks the data for outliers and reasonableness. The CRP QAO or a second employee reviews the data for transcription accuracy and completeness. A Data Review Checklist is completed for each set of field data submitted to H-GAC along with scanned copies of field sheets, calibration forms, and COCs. SJRA performs data management for only The Woodlands field data because Eastex manages all the lab data.

When all data is received from SJRA, DWO Lab, and Eastex Lab, H-GAC's Data Manager inputs the data to an ACCESS database, merges the related data sets, and reviews the data for outliers. H-GAC QAO reviews the data for accuracy, reasonableness, and completeness. A Data Summary Sheet is submitted to TCEQ with each data set from Lake Conroe and/or The Woodlands.

- <u>Eastex Lab</u> Details of their protocols for data reduction and review are described in the Eastex Laboratory Quality Manual, (most recent version), Sections 8.1. A Data Review Checklist is completed for each set of data submitted to H-GAC. Eastex sends data results from all CRP monitoring to H-GAC.
- Environmental Institute of Houston (EIH) water samples are sent to Eastex Lab for analysis. (See Eastex Lab details above.) Field data sheets are collected and information input to EXCEL spreadsheets by the EIH Data Manager or designee who also checks the data for outlier s and reasonableness. The EIH Field QAO also reviews the data for transcription accuracy and reasonableness. A Data Review Checklist is completed for each set of data submitted to H-GAC.
- TRIES Details of the protocols for data reductions and review are described in their TRIES Analytical Lab Quality Manual, Section 27 (most current version). The TRIES Data Manager collects all field data sheets and immediately inputs data into an EXCEL spreadsheet while also checking for data outliers and reasonableness. The TRIES CRP QAO also reviews the data for transcription accuracy and reasonableness. A Data Review Checklist is completed for each set of data submitted to H-GAC.

Record Keeping and Data Storage

As each data set is processed by H-GAC, all hard copies of data and/or field forms are organized into packets. All correspondence or reports related to the data set are to be printed and placed in the packet of information, including but not limited to the QAO review comments, the draft and final Data Summary Reports/Sheets. Any other documentation related to that specific data set is also to be attached. Each packet of information is placed in a file storage box for long term storage.

Each local agency submits electronic data along with scanned copies of field sheets and COC forms. In addition, the local agency is required to submit a "Data Review Checklist" (Appendix F) to H-GAC. Electronic data is stored in folders on H-GAC network as "raw data" and as copies for data management, verification, and validation. Daily and weekly backups are completed on H-GAC's server. Hard copies are filed in filing cabinets or file boxes for use as needed. Data more than 2 years old may be stored off-site storage according to H-GAC procedures. All data is maintained indefinitely by H-GAC and for at least seven (7) years by all local partners.

Each partner has a paragraph below briefly discussing their Record Keeping and Data Storage practices.

- <u>Harris County Pollution Control Services (HCPCS)</u> Details of the HCPCS records management and data storage procedures may be found in section 6 of the HCPCS Laboratory Services Quality Manual, (most current version). The laboratory data manager manages all the data hard copy and electronic for both field and lab.
- <u>City of Houston HHD-BLS</u> Details of their protocols for records management and data storage procedures are described in their Environmental Laboratory Services Quality Manual, Section 6 and Section 15, (most current version). HHD field data is housed and electronically stored at HHD offices located Park Place, Houston. Electronic data is stored in an Access Database which is maintained by the HHD field office.
- <u>City of Houston DWO Laboratory</u> Details of their protocols for records management and data storage procedures are described in their Quality Management Plan, Section 13, (most recent revision). Original DWO field data is stored at their field office located at Lake Houston. Copies of all field sheets are given to the lab to be kept with lab analysis paperwork. Electronic data is stored in an EXCEL spreadsheet by the field supervisor.
- <u>San Jacinto River Authority (SJRA)</u> will store all hard copies of field and lab data from both Lake Conroe and The Woodlands sample sites in the Program Manager's Lake Conroe office. Electronic data (raw and working files) will be stored on a shared computer server at the same location in EXCEL or ACCESS format.
- <u>Eastex Environmental Lab</u> Details of the Eastex *Electronic Record Storage* system is described in the Laboratory's Quality Assurance Manual, (most current version), Sections 8.4.
- Environmental Institute of Houston (EIH) stores hard copy and electronic data at their offices on the UHCL campus. Electronic data is stored in EXCEL spreadsheets and various workbooks. The data manager maintains the files.
- <u>TRIES</u> Details of the protocols for records management and data storage procedures are described in their TRIES Analytical Lab Quality Manual, Sections 16.1 & 16.2 (most current version). All field data will be stored electronically in an EXCEL spreadsheet and in hard copy format at TRIES. The TRIES Data Manager and the TRIES Lab QAO will maintain the data.

Data Handling, Hardware, and Software Requirements

H-GAC maintains several networked computers to store and manage CRP data. All computers are equipped with at least Office 2010 which includes MS EXCEL 2010 and MS ACCESS 2010 or newer versions. The data manager's computer also includes Oracle 9 to assist with screening, management and reformatting the data to TCEQ's specifications. Additionally, the SAS software is available on the DM's and another computer if an alternate SAS Operator is needed.

Information Resource Management Requirements

Data will be managed in accordance with the TCEQ DMRG (most recent revision), and applicable H-GAC information resource management policies. See the most current version of H-GAC's Data Analytics and Research Department's, formerly the Community & Environmental Planning Department, *Geospatial Data Management Plan*. The most current version of this document is found on H-GAC's web site at https://www.h-gac.com/community-and-environmental-planning-publications/water-resources. It is updated approximately every two years. This plan outlines how both tabular (non-geographic) and spatial (geographic) datasets are captured, manipulated, analyzed, stored, and displayed with the Geospatial/GIS environment as it relates to sharing of data, development of geospatial applications, cartography, and underlying GIS resources. A brief description can be found in Appendix I.

GPS equipment may be used as a component of the information required by the Station Location (SLOC) request process for creating the certified positional data that will ultimately be entered into SWQMIS database. Positional data obtained by CRP grantees using a GPS will follow the TCEQ's OPP 8.11 policy regarding the collection and management of positional data. Positional data may be acquired with a GPS and verified with photo interpolation using a certified source, such as Google Earth or Google Maps. The verified coordinates and map interface can then be used to develop a new SLOC.

C1 Assessments and Response Actions

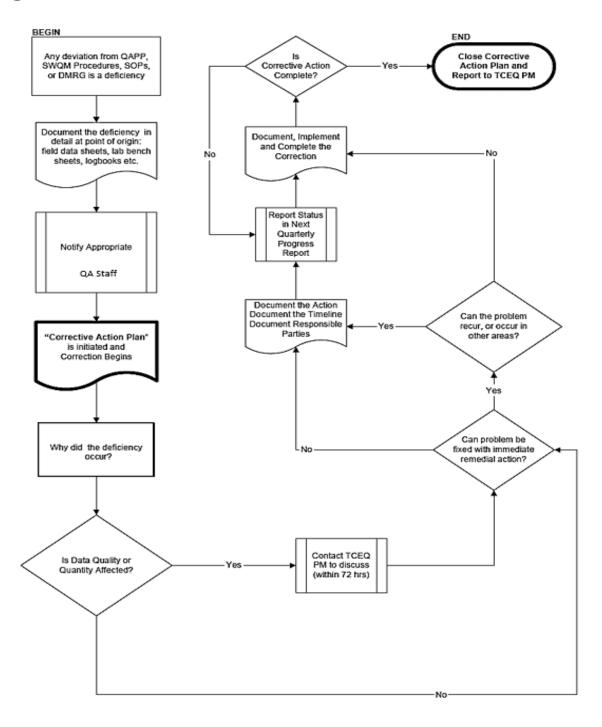
The following table presents the types of assessments and response actions for data collection activities applicable to the QAPP.

Table C1.1 Assessments and Response Requirements

Assessment Activity	Approximate Schedule	Responsible Party	Scope	Response Requirements
Status Monitoring Oversight, etc.	Continuous	H-GAC	Monitoring of the project status and records to ensure requirements are being fulfilled	Report to TCEQ in Quarterly Report
Monitoring Systems Audit of H-GAC	Dates to be determined by TCEQ CRP	TCEQ	Field sampling, handling and measurement; facility review; and data management as they relate to CRP	30 days to provide corrective actions response to the TCEQ
Monitoring Systems Audit of Program Subparticipants	Dates to be determined by H-GAC (at least once per biennium)	H-GAC	Field sampling, handling and measurement; facility review; and data management as they relate to CRP	30 days to respond in writing to the H-GAC. PA will report problems to TCEQ in Progress Report.
Laboratory Assessment	Dates to be determined by TCEQ	TCEQ Laboratory Assessor	Analytical and quality control procedures employed at the laboratory and the contract laboratory	30 days to provide corrective actions response to the TCEQ

Corrective Action Process for Deficiencies

Deficiencies are any deviation from the QAPP, SWQM Procedures, or other applicable guidance . Deficiencies may invalidate resulting data and require corrective action. Repeated deficiencies should initiate a CAP. Corrective action for deficiencies may include for samples to be discarded and re-collected. Deficiencies are documented in logbooks, field data sheets, etc. by field or laboratory staff, are communicated to the H-GAC QAO and/or Data manager (or other appropriate staff) and should be subject to periodic review so their responses can be uniform, and their frequency tracked. It is the responsibility of the H-GAC Project Manager, in consultation with the H-GAC QAO and Data Manager, to ensure that the actions and resolutions to the problems are documented and that records are maintained in accordance with this QAPP. In addition, these actions and resolutions will be conveyed to the CRP Project Manager or QAO both verbally and in writing in quarterly progress reports and by completion of a CAP.


Corrective Action

CAPs should:

- Identify the problem, nonconformity, or undesirable situation
- Identify immediate remedial actions if possible
- Identify the underlying cause(s) of the problem
- Describe the programmatic impact
- Identify whether the problem is likely to recur, or occur in other areas
- Assist in determining the need for corrective action and actions to prevent reoccurrence
- Employ problem-solving techniques to verify causes, determine solution, and develop an action plan
- Identify personnel responsible for action
- Establish timelines and provide a schedule
- Document the corrective action and action(s) to prevent reoccurrence

A flow chart has been developed to facilitate the process (see figure C1.1: Corrective Action Process for Deficiencies).

Figure C1.1 Corrective Action Process for Deficiencies

The status of CAPs will be included with quarterly progress reports. In addition, significant conditions which, if uncorrected, could have a serious effect on safety or on the validity or integrity of data will be reported to the TCEQ immediately.

The H-GAC QAO or designee is responsible for ensuring that corrective actions have been implemented and tracks deficiencies and corrective actions. Records of audit findings and corrective actions are maintained by the H-GAC QAO. Audit reports and associated corrective action documentation will be submitted to the TCEQ with the quarterly progress reports.

If audit findings and corrective actions cannot be resolved, then the authority and responsibility for terminating work are specified in the TCEQ QMP and in agreements in contracts between participating organizations.

C2 Reports to Management

Table C2.1 QA Management Reports

Type of Report	Frequency (daily, weekly, monthly, quarterly, etc.)	Projected Delivery Date(s)	Person(s) Responsible for Report Preparation	Report Recipients
Quarterly project reports & invoices from local partners	Quarterly	Within 10 days of end of quarter	Local partner project manager	Project manager on H-GAC's CRP team
Non-Conformance & Corrective Action Report	As Needed	With quarterly reports to TCEQ or sooner depending on severity	Subparticipant Field &Laboratory Staff; H-GAC Staff & QAO	H-GAC QA Staff; TCEQ PM
CRP Quarterly Progress Reports	Quarterly	December 15, 2023 March 15, 2024 June 15, 2024 September 15, 2024 December 15, 2024 March 15, 2025 June 15, 2025 August 15, 2025	H-GAC Project Manager or Designee	TCEQ CRP Project Management
Monitoring Systems Audit Report and Response	Once per biennium	Copies of Monitoring System Audit reports to be included with quarterly report to TCEQ	H-GAC QAO	TCEQ CRP Project Management
Data Summary	With data delivery	As Needed	H-GAC Data Manager	TCEQ CRP Project Management

Reports to H-GAC Project Management

H-GAC CRP QAO is required to report the status of implementation of the procedures discussed in this project plan and, thereby, the status of data quality. This information is gathered during quarterly meetings of the Regional Monitoring Workgroup. All local program representatives are required to give oral presentations which include information about their quarterly monitoring activities. The local programs, HHD, EIH, & TRIES, who receive CRP funds to support data collection activities, are also required to submit written documentation along with every invoice summarizing their monitoring activities. H-GAC schedules bi-weekly meetings to update the H-GAC's CRP PM and team members regarding status of deliverables and tasks.

During review and evaluation of submitted data, H-GAC's Data Manager and/or H-GAC's QAO will investigate suspected problems with the data. The QAO for each participating local agency is informed either informally (phone call) or by e-mail memoranda of any quality assurance problems encountered. With the local agency's help the issue will be investigated further and a resolution adopted. The resolution for each issue will be documented on the Data Summary Sheet that accompanies each dataset submitted to TCEQ. When H-GAC's Data Manager submits data to TCEQ, a summary of this information will be transmitted by H-GAC's Data Manager or QAO to H-GAC's Project Manager.

Information regarding the monitoring activities of funded subparticipants will then be reported to the TCEQ Project Manager by means of quarterly progress reports required under the Clean Rivers Program. The results of field and/or laboratory bi-annual monitoring system audits will be detailed in reports to the local program managers and/or the person who directly supervises field activities. This information will also be reported to the TCEQ by means of status reports to be included in the quarterly progress reports. Responses from local agencies regarding the audit reports and findings will also be included in the quarterly progress reports to TCEQ.

Reports to TCEQ Project Management

All reports detailed in this section are contract deliverables and are transferred to the TCEQ in accordance with contract requirements.

Progress Report

Summarizes the H-GAC's activities for each task; reports monitoring status, problems, delays, deficiencies, status of open CAPs, and documentation for completed CAPs; and outlines the status of each task's deliverables.

Monitoring Systems Audit Report and Response

Following any audit performed by the H-GAC, a report of findings, recommendations and response is sent to the TCEQ in the quarterly progress report.

Data Summary

Contains basic identifying information about the data set and comments regarding inconsistencies and errors identified during data verification and validation steps or problems with data collection efforts (e.g. deficiencies).

Reports by TCEQ Project Management

Contractor Evaluation

The H-GAC participates in a Contractor Evaluation by the TCEQ annually for compliance with administrative and programmatic standards. Results of the evaluation are submitted to the TCEQ Financial Administration Division, Procurement and Contracts Section.

D1 Data Review, Verification, and Validation

All field and laboratory data will be reviewed and verified for integrity and continuity, reasonableness, and conformance to project requirements, and then validated against the project objectives and measurement performance specifications which are listed in Section A7 of this QAPP. Only those data which are supported by appropriate quality control data and meet the measurement performance specifications defined for this project will be considered acceptable and will be reported to the TCEQ for entry into SWQMIS.

The procedures for verification and validation of data are described in Section D2 below. Local agency data managers and H-GAC CRP Data Manager are responsible for ensuring that field data are properly reviewed, verified, and submitted in the required format to the TCEQ Project Manager. Likewise, the Laboratory Managers of HCPCS, HHD, DWO, TRIES, and Eastex laboratories are responsible for ensuring that laboratory data are reviewed, verified, and submitted in the required format to H-GAC CRP Data Manager. Finally, H-GAC CRP QAO and/or Data Manager are responsible for confirming the validation of all collected data and ensuring that all reported data meet the data quality objectives of the project and are suitable for reporting to TCEQ.

D2 Verification and Validation Methods

All field and laboratory data will be reviewed, verified and validated to ensure they conform to project specifications.

Data review, verification, and validation will be performed using self-assessments as well as peer and management review as appropriate to the project task. The data review tasks to be performed by field and laboratory staff are listed in the first two columns of Table D2.1, respectively. Potential errors are identified by examination of documentation and by manual examination of corollary or unreasonable data; this analysis may be computer-assisted. If a question arises or an error is identified, the manager of the task responsible for generating the data is contacted to resolve the issue. Issues which can be corrected are corrected and documented. If an issue cannot be corrected, the task manager consults with the higher-level project management to establish the appropriate course of action, or the data associated with the issue are rejected and not reported to the TCEQ for storage in SWQMIS. Field and laboratory reviews, verifications, and validations are documented.

After the field and laboratory data are reviewed, another level of review is performed once the data are combined into a data set. This review step as specified in Table D2.1 is performed by the H-GAC Data Manager and QAO. Data review, verification, and validation tasks to be performed on the data set include, but are not limited to, the confirmation of laboratory and field data review, evaluation of field QC results, additional evaluation of anomalies and outliers, analysis of sampling and analytical gaps, and confirmation that all parameters and sampling sites are included in the QAPP.

The Data Review Checklist (see Appendix F) covers three main types of review: data format and structure, data quality review, and documentation review. The Data Review Checklist is completed and submitted to H-GAC with each dataset. Some of the information from the Data Review checklist is transferred to a Data Summary Report (Appendix G) as determined by the H-GAC Data Manager, then, both the Data Review Checklist and Data Summary Report are sent with the water quality datasets submitted to the TCEQ to ensure that the review process is being performed.

Another element of the data validation process is consideration of any findings identified during the monitoring systems audit conducted by the TCEQ CRP Lead Quality Assurance Specialist. Any issues requiring corrective action must be addressed, and the potential impact of these issues on previously collected data will be assessed. After the data are reviewed and documented, the H-GAC Project Manager or designee validates that the data meets the data quality objectives of the project and are suitable for reporting to TCEQ.

If any requirements or specifications of the CRP are not met, based on any part of the data review, the responsible party should document the nonconforming activities and submit the information to the H-GAC Data Manager with the data in the Data Review Checklist (See Appendix F). All failed QC checks, missing samples, missing analytes, missing parameters, and suspect results should be discussed and documented in the Data Summary Report (Appendix G).

Table D2.1a: Data Review Tasks for the Houston-Galveston Area Council (H-GAC)

H-GAC Data to be Verified	Field	Laboratory	H-GAC QAO or Data
	Tasks	Tasks (Eastex Lab)	Manager Tasks
Sample documentation complete; samples labeled, sites identified	H-GAC Field Staff &/or H-GAC QAO	Sample Custodian	
Field instrument pre- and post-calibration results within limits	H-GAC Field Staff &/or H-GAC QAO		H-GAC Data Mgr &/or H-GAC QAO
Field QC samples collected for all analytes as prescribed in the TCEQ SWQM Procedures Manual	H-GAC QAO		
Field documentation (e.g., biological, stream habitat) complete	H-GAC Field Staff &/or H-GAC QAO		
Standards and reagents traceable	H-GAC Field Staff	Lab QAO	
Chain of custody complete/acceptable	H-GAC Field Staff &/or H-GAC QAO	Sample Custodian	H-GAC Data Mgr &/or H-GAC QAO
NELAP Accreditation is current		Lab QAO	H-GAC Data Mgr &/or H-GAC QAO
Sample preservation and handling acceptable	H-GAC Field Staff	Sample Custodian	H-GAC Data Mgr &/or H-GAC QAO
Holding times not exceeded		Lab QAO	H-GAC Data Mgr &/or H-GA QAO
Collection, preparation, and analysis consistent with SOPs and QAPP	H-GAC Field Staff &/or H-GAC QAO	Lab QAO	H-GAC QAO
Instrument calibration data complete	H-GAC Field Staff &/or H-GAC QAO	Lab QAO	
Bacteriological records complete		Lab QAO	H-GAC Data Mgr &/or H-GAC QAO
QC samples analyzed at required frequency		Lab QAO	H-GAC Data Mgr
QC results meet performance and program specifications		Lab QAO	H-GAC Data Mgr
Analytical sensitivity (Limits of Quantitation/Ambient Water Reporting Limits) consistent with QAPP		Lab QAO	H-GAC Data Mgr &/or H-GAC QAO
Results, calculations, transcriptions checked	H-GAC Field Staff &/or H-GAC QAO	Technical Director	
Laboratory bench-level review performed		Head Technician	
All laboratory samples analyzed for all parameters		Lab QAO	
Corollary data agree		Lab QAO	H-GAC Data Mgr
Nonconforming activities documented	H-GAC QAO	Lab QAO	H-GAC QAO
Outliers confirmed and documented; reasonableness check performed	H-GAC QAO	Data Mgr & Lab QAO	H-GAC Data Mgr &/or H-GAC QAO
Dates formatted correctly	H-GAC Data Mgr		H-GAC Data Mgr &/or H-GAC QAO
Depth reported correctly	H-GAC Data Mgr		H-GAC Data Mgr &/or H-GAC QAO
TAG IDs correct	H-GAC Data Mgr		H-GAC Data Mgr
TCEQ Station ID number assigned	H-GAC Data Mgr	Data Mgr & Lab QAO	H-GAC Data Mgr
Valid parameter codes	H-GAC Data Mgr	Data Mgr & Lab QAO	H-GAC Data Mgr
Codes for submitting & collecting entity(ies) and monitoring type(s) used correctly	H-GAC Data Mgr		H-GAC Data Mgr
Time based on 24-hour clock	H-GAC Data Mgr	Data Manager	H-GAC Data Mgr &/or H-GAC QAO
Absence of transcription error confirmed	H-GAC Field Staff, Data Mgr &/or QAO	Technical Director	H-GAC Data Mgr
Absence of electronic errors confirmed	H-GAC Field Staff, Data Mgr &/or QAO	Technical Director	H-GAC Data Mgr
Sampling and analytical data gaps checked (e.g., all sites for which data are reported are on the CMS)	H-GAC Data Mgr &/or QAO	Data Manager	H-GAC Data Mgr
Field QC results attached to data review checklist	H-GAC Data Mgr		H-GAC Data Mgr
10% of data manually reviewed	H-GAC Data Mgr &/or H-GAC QAO	Technical Director	H-GAC QAO

Table D2.1b: Data Review Tasks for Harris County Pollution Control Services (HCPCS)

Sample documentation complete; samples labeled, sites identified Field instrument pre- and post-calibration results within limits Field or RP Data Manager k/or Field QAO Field	HCPCS Data	Field	Laboratory	H-GAC QAO or
Sample documentation complete; samples labeled, sites (ERP Data Manager & Sor Field QAO) Sample Administrator				_
Field Gramples collected for all analytes as prescribed in the TCGS SUMP Procedures Manual Field Goamples collected for all analytes as prescribed in the TCGS SUMP Procedures Manual Field Goamples collected for all analytes as prescribed in the TCGS SUMP Procedures Manual Field Goamples collected for all analytes as prescribed in the TCGS SUMP Procedures Sumple Administrator & Lab QAO Sumple Administrator & Lab QAO Sumple Administrator & Lab QAO RELAP Accreditation is current CRP Data Manager Analytes assentiation (e.g., biological, stream habitat) CRP Data Manager Ryor Field QAO RELAP Accreditation is current CRP Data Manager Ryor Field QAO RELAP Accreditation is current CRP Data Manager Ryor Field QAO RELAP Accreditation is current CRP Data Manager Ryor Field QAO RELAP Accreditation is current CRP Data Manager Ryor Field QAO RELAP Accreditation is current CRP Data Manager Ryor Field QAO RELAP Accreditation is current CRP Data Manager Ryor Field QAO RELAP Accreditation is current CRP Data Manager Ryor Field QAO RELAP Accreditation is current CRP Data Manager Ryor Field QAO Related QAO RELAP Accreditation is current CRP Data Manager Ryor Field QAO Related Q		CRP Data Manager &/or Field OAO	Sample Administrator	TUSKS
Field QC samples collected for all analytes as prescribed in the TCEQ SWAP Procedures of Montal Field documentation (e.g., biological, stream habitat) CRP Data Manager & Manager-Lab Supervisor & Lab QAO & CRP Data Manager & Manager-Lab Supervisor & Lab QAO & CRP Data Manager & Manager-Lab Supervisor & Lab QAO & CRP D		CRP Data Manager		
complete (Field QC samples collected for all analytes as prescribed in the TCEQ SWQM Procedures Manual	CRP Data Manager		
Chain of custody complete/acceptable CRP Data Manager &/or Field QAO CRP Data Manager &/or Field QAO RELAP Accreditation is current CRP Data Manager &/or Field QAO Sample preservation and handling acceptable CRP Data Manager &/or Field QAO Collection, preparation, and analysis consistent with CRP Data Manager &/or Field QAO Collection, preparation, and analysis consistent with CRP Data Manager &/or Field QAO CRP Data Manager &/or Field QAO Lab Supervisor & Lab QAO H-GAC Data Mgr &/or H-GAC QAO CRP Data Manager &/or Field QAO Lab Supervisor & Lab QAO H-GAC QAO CRP Data Manager &/or Field QAO Lab Supervisor & Lab QAO H-GAC Data Mgr &/or H-GAC Data Mgr &/or H-GAC Data Mgr &/or H-GAC Data Mgr &/or H-GAC QAO CRP Data Manager &/or Field QAO Lab Supervisor & Lab QAO H-GAC Data Mgr &/or H-GAC QAO Cresults near depriormance and program specifications Lab Supervisor & Lab QAO H-GAC Data Mgr &/or H-GAC QAO Cresults near depriormance and program specifications Lab Supervisor & Lab QAO H-GAC Data Mgr &/or Water Reporting Limits) consistent with QAPP Kasults, calculations, transcriptions schecked Lab Supervisor & Lab QAO All inhoratory samples analyzed for all parameters Lab Supervisor & Lab QAO All aboratory data agree CRP Data Manager &/or Field QAO Outliers confirmed and documented; reasonableness CRP Data Manager #/OR Data Mgr &/or				
NELAP Accreditation is current September Septemb	Standards and reagents traceable	&/or Field QAO	Lab Supervisors; & Lab QAO	
Sample preservation and handling acceptable CRP Data Manager & feld QAO Holding times not exceeded Collection, preparation, and analysis consistent with SQPs and QAPP Instrument calibration data complete CRP Data Manager & feld QAO Racteriological records complete Racteriological records complete Racteriological records complete Racteriological records complete Lab Supervisor & Lab QAO Hada C Data Mgr &/or Field QAO CRP Data Manager & Lab Supervisor & Lab QAO Racteriological records complete Lab Supervisor & Lab QAO Racteriological records complete Racteriological records complete Racteriological records complete Lab Supervisor & Lab QAO Racteriological records complete Racteriological	Chain of custody complete/acceptable		Administrator; &/or Lab QÂO	H-GAC QAO
Holding times not exceeded Holding times not exceeded Collection, preparation, and analysis consistent with SOPS and QAPP Collection, preparation, and analysis consistent with SOPS and QAPP Instrument calibration data complete CRP Data Manager & Lab Supervisor & Lab QAO Bacteriological records complete CRP Data Manager & Lab Supervisor & Lab QAO Cas analysed at required frequency CRP Data Manager & Lab Supervisor & Lab QAO Cas analysed at required frequency CRP Data Manager & Lab Supervisor & Lab QAO Cas analysed at required frequency CRP Data Manager & Lab Supervisor & Lab QAO Cas analysed at required frequency CRP Data Manager & Lab Supervisor & Lab QAO Hacac Data Mgr & Data Manager & Lab Supervisor & Lab QAO Cas analysis analyzed for all parameters Crep Data Manager & Lab Supervisor & Lab QAO Outliers confirmed and documented; reasonableness & Lab QAO Dates formatted correctly CRP Data Manager & Lab QAO & Sample Administrator & Hacac Data Mgr & Hacac Dat	NELAP Accreditation is current			
Corollary data agree Corollary data agree Corp Data Manager Alb Supervisor & Lab QAO Lab Supervisor & Lab QAO H-GAC QAO H-GAC QAO H-GAC QAO H-GAC Data Mgr &/or Field QAO Coresults meet performance and program specifications Lab Supervisor & Lab QAO Lab Supervisor & Lab QAO H-GAC Data Mgr &/or H-GAC Data Mgr &/or Field QAO Absence of transcription error confirmed CRP Data Manager K/or Field QAO Absence of electronic errors confirmed CRP Data Manager K/or Field QAO CRP Data Manager K/or Field QAO Lab QAO & Sample Administrator	Sample preservation and handling acceptable		Lab Supervisor & Lab QAO	
Instrument calibration data complete CRP Data Manager Lab Supervisor & Lab QAO Casamples analyzed at required frequency QC samples analyzed at required frequency QC results met performance and program specifications Analytical sensitivity (Limits of Quantitation/Ambient Water Reporting Limits) consistent with QAPP Results, calculations, transcriptions checked Lab Supervisor & Lab QAO All laboratory samples analyzed for all parameters Corollary data agree Nonconforming activities documented CRP Data Manager K/or Field QAO Dates formatted correctly Depth reported correctly CRP Data Manager K/or Field QAO Lab QAO Lab QAO Lab Supervisor & Lab QAO H-GAC Data Mgr H-GAC Data Mgr H-GAC QAO H-GAC Data Mgr K/or H-GAC QAO H-GAC Data Mgr K/or H-GAC Data Mgr CRP Data Manager K/or Field QAO Absence of transcription error confirmed CRP Data Manager K/or Field QAO Absence of electronic errors confirmed CRP Data Manager K/or Field QAO CRP	Holding times not exceeded		Lab Supervisor & Lab QAO	
Bacteriological records complete Bacteriological records complete Cresults meet performance and program specifications Lab Supervisor & Lab QAO H-GAC Data Mgr &/or H-GAC Data Mgr Cresults meet performance and program specifications Lab Supervisor & Lab QAO H-GAC Data Mgr H-GAC Data Mg	Collection, preparation, and analysis consistent with SOPs and QAPP	&/or Field QAO	Lab Supervisor & Lab QAO	H-GAC QAO
CS amples analyzed at required frequency Lab Supervisor & Lab QAO H-GAC Data Mgr QC results meet performance and program specifications Lab Supervisor & Lab QAO H-GAC Data Mgr & Analytical at required frequency Lab Supervisor & Lab QAO H-GAC Data Mgr & Analytical at required frequency Lab Supervisor & Lab QAO H-GAC Data Mgr & Analytical sensitivity (Limits of Quantitation/Ambient Water Reporting Limits) consistent with QAPP Lab Supervisor & Lab QAO H-GAC Data Mgr & Analytical sensitivity (Limits of Quantitation/Ambient Water Reporting Limits) consistent with QAPP Lab Supervisor & Lab QAO H-GAC Data Mgr & All laboratory bench-level review performed Lab Supervisor & Lab QAO Lab Supervisor & Lab QAO H-GAC Data Mgr & All laboratory samples analyzed for all parameters Lab Supervisor & Lab QAO H-GAC Data Mgr & All laboratory samples analyzed for all parameters Lab Supervisor & Lab QAO H-GAC Data Mgr & All laboratory samples analyzed for all parameters Lab Supervisor & Lab QAO H-GAC Data Mgr & All laboratory samples analyzed for all parameters Lab Supervisor & Lab QAO H-GAC Data Mgr & All laboratory samples analyzed for all parameters Lab QAO Lab QAO H-GAC Data Mgr & All laboratory samples analyzed for all parameters Lab QAO H-GAC Data Mgr & All laboratory samples analyzed for all parameters Lab QAO H-GAC Data Mgr & All laboratory samples analyzed for all parameters Lab QAO H-GAC Data Mgr & All laboratory samples analyzed for all parameters Lab QAO H-GAC Data Mgr & H-GAC Data Mgr & H-GAC Data Mgr & H-GAC Data Mgr H-GAC Data Mgr & H-GAC Data Mgr & H-GAC Data Mgr	Instrument calibration data complete		Lab QAO	
CRP Data Manager Lab Supervisor & Lab QAO H-GAC Data Mgr & CRP Data Manager Serifications Lab Supervisor & Lab QAO H-GAC Data Mgr & H-GAC QAO	Bacteriological records complete		Lab Supervisor & Lab QAO	
Analytical sensitivity (Limits of Quantitation/Ambient Water Reporting Limits) consistent with QAPP Results, calculations, transcriptions checked Lab Supervisor & Lab QAO Laboratory bench-level review performed All laboratory samples analyzed for all parameters Corollary data agree Nonconforming activities documented CRP Data Manager Ry or Field QAO Dutliers confirmed and documented; reasonableness checkeperformed Depth reported correctly CRP Data Manager Ry or Field QAO Eab QAO Lab Supervisor & Lab QAO H-GAC Data Mgr &/or H-GAC QAO H-GAC Data Mgr &/or H-GAC QAO H-GAC QAO H-GAC Data Mgr &/or H-GAC QAO Depth reported correctly CRP Data Manager Ry or Field QAO Eab QAO Eab Supervisor & Lab QAO H-GAC Data Mgr &/or H-GAC QAO H-GAC QAO H-GAC QAO H-GAC QAO H-GAC Data Mgr &/or H-GAC QAO Eab QAO Eab QAO Eab Supervisor & Lab QAO H-GAC Data Mgr &/or H-GAC QAO H-GAC QAO H-GAC QAO Eab QAO Eab QAO Eab QAO Eab QAO H-GAC Data Mgr &/or H-GAC QAO H-GAC Data Mgr &/or H-GAC QAO Eab QAO H-GAC Data Mgr &/or H-GAC QAO Eab QAO Ea	QC samples analyzed at required frequency		Lab Supervisor & Lab QAO	H-GAC Data Mgr
Results, calculations, transcriptions checked Lab Supervisor & Lab QAO			Lab Supervisor & Lab QAO	H-GAC Data Mgr
Lab Supervisor & Lab QAO All laboratory samples analyzed for all parameters Corollary data agree CRP Data Manager Nonconforming activities documented CRP Data Manager Ryor Field QAO Coutliers confirmed and documented; reasonableness check performed Dates formatted correctly CRP Data Manager Ryor Field QAO Lab Supervisor & Lab QAO H-GAC QAO H-GAC QAO H-GAC QAO H-GAC Data Mgr &/or H-GAC QAO Lab QAO Exp Data Manager Ryor Field QAO Lab QAO Lab QAO Lab QAO H-GAC Data Mgr &/or H-GAC Data Mgr Ryor H-GAC Dat			Lab Supervisor & Lab QAO	
All laboratory samples analyzed for all parameters Corollary data agree CRP Data Manager &/or Field QAO Dutliers confirmed and documented; reasonableness check performed Dates formatted correctly Depth reported correctly CRP Data Manager &/or Field QAO CRP Data Manager &/or Field QAO Lab QAO & Sample Administrator CRP Data Manager &/or Field QAO TAG IDs correct TCEQ Station ID number assigned Valid parameter codes CRP Data Manager &/or Field QAO Absence of transcription error confirmed Absence of electronic errors confirmed Absence of electronic errors confirmed Sampling and analytical data gaps checked (e.g., all sites for which data are reported are on the CMS) To CRP Data Manager &/or Field QAO CRP Data Manager &/or Field QAO CRP Data Manager &/or Field QAO Lab QAO & Sample Administrator H-GAC Data Mgr Lab QAO & Sample Administrator Lab QAO & Sample Administrator H-GAC Data Mgr H-GAC Data Mgr H-GAC Data Mgr H-GAC Data Mgr Lab QAO & Sample Administrator H-GAC Data Mgr H-GAC Data Mgr Lab QAO & Sample Administrator H-GAC Data Mgr H-GAC Data Mgr H-GAC Data Mgr Lab QAO & Sample Administrator H-GAC Data Mgr H-GAC Data Mgr H-GAC Data Mgr H-GAC Data Mgr Lab QAO & Sample Administrator H-GAC Data Mgr Lab QAO & Sample Administrator H-GAC Data Mgr H-GAC Data Mgr			Lab Supervisor & Lab QAO	
Corollary data agree	Laboratory bench-level review performed		Lab Supervisor & Lab QAO	
Nonconforming activities documented CRP Data Manager & /or Field QAO Dutliers confirmed and documented; reasonableness check performed Dates formatted correctly Dates formatted correctly Depth reported correctly CRP Data Manager & /or Field QAO TAG IDs correct TCEQ Station ID number assigned Valid parameter codes Codes for submitting & collecting entity(ies) and monitoring type(s) used correctly Time based on 24-hour clock Absence of transcription error confirmed Absence of electronic errors confirmed Sampling and analytical data gaps checked (e.g., all sites for which data are reported are on the CMS) Field QAO CRP Data Manager & /or Field QAO Lab QAO & Sample Administrator H-GAC Data Mgr H-GAC Data Mgr H-GAC Data Mgr H-GAC Data Mgr &/or H-GAC QAO Lab QAO & Sample Administrator H-GAC Data Mgr H-GAC Data Mgr Lab QAO & Sample Administrator H-GAC Data Mgr	All laboratory samples analyzed for all parameters			
Outliers confirmed and documented; reasonableness check performed Dates formatted correctly Depth reported correctly CRP Data Manager	Corollary data agree			H-GAC Data Mgr
check performed Dates formatted correctly Depth reported correctly CRP Data Manager & /or Field QAO TAG IDs correct TCEQ Station ID number assigned Valid parameter codes CRP Data Manager & /or Field QAO Time based on 24-hour clock Absence of transcription error confirmed Absence of electronic errors confirmed Absence of electronic errors confirmed Sampling and analytical data gaps checked (e.g., all sites for which data are reported are on the CMS) Field QC results attached to data review checklist CRP Data Manager & /or Field QAO CRP Data Manager & /or Field QAO	Nonconforming activities documented		1	H-GAC QAO
Depth reported correctly CRP Data Manager &/or Field QAO Lab QAO Lab QAO H-GAC Data Mgr &/or H-GAC QAO TAG IDs correct TCEQ Station ID number assigned Valid parameter codes Codes for submitting & collecting entity(ies) and monitoring type(s) used correctly Time based on 24-hour clock Absence of transcription error confirmed Absence of electronic errors confirmed CRP Data Manager &/or Field QAO Lab QAO & Sample Administrator H-GAC Data Mgr Lab QAO & Sample Administrator H-GAC Data Mgr Lab QAO & Sample Administrator H-GAC Data Mgr H-GAC Data Mgr Lab QAO & Sample Administrator H-GAC Data Mgr H-GAC Data Mgr Lab QAO & Sample Administrator H-GAC Data Mgr				
TAG IDs correct TAG IDs correct H-GAC Data Mgr TCEQ Station ID number assigned Valid parameter codes Codes for submitting & collecting entity(ies) and monitoring type(s) used correctly Time based on 24-hour clock Absence of transcription error confirmed Absence of electronic errors confirmed Absence of electronic errors confirmed CRP Data Manager & /or Field QAO Lab QAO & Sample Administrator H-GAC Data Mgr H-GAC Data Mgr H-GAC Data Mgr H-GAC Data Mgr Lab QAO & Sample Administrator H-GAC Data Mgr	Dates formatted correctly		Lab QAO & Sample Administrator	
TCEQ Station ID number assigned Valid parameter codes Codes for submitting & collecting entity(ies) and monitoring type(s) used correctly Time based on 24-hour clock Absence of transcription error confirmed Absence of electronic errors confirmed CRP Data Manager &/or Field QAO Sample Administrator H-GAC Data Mgr H-GAC Data Mgr H-GAC Data Mgr CRP Data Manager &/or Field QAO Sample Administrator H-GAC Data Mgr CRP Data Manager &/or Field QAO CRP Data Manager &/or Field QAO Field QC results attached to data review checklist CRP Data Manager &/or Field QAO CRP Data Manager	Depth reported correctly		Lab QAO	H-GAC Data Mgr &/or H-GAC QAO
Valid parameter codes Codes for submitting & collecting entity(ies) and monitoring type(s) used correctly Time based on 24-hour clock Absence of transcription error confirmed CRP Data Manager &/or Field QAO Absence of electronic errors confirmed CRP Data Manager &/or Field QAO Sample Administrator H-GAC Data Mgr H-GAC Data Mgr H-GAC Data Mgr Lab QAO & Sample Administrator H-GAC Data Mgr Lab QAO & Sample Administrator H-GAC Data Mgr CRP Data Manager &/or Field QAO Field QC results attached to data review checklist CRP Data Manager &/or Field QAO Lab QAO & Sample Administrator H-GAC Data Mgr Lab QAO & Sample Administrator H-GAC Data Mgr	TAG IDs correct			H-GAC Data Mgr
Codes for submitting & collecting entity(ies) and monitoring type(s) used correctly Time based on 24-hour clock CRP Data Manager &/or Field QAO Absence of transcription error confirmed CRP Data Manager &/or Field QAO CRP Data Manager &/or Field QAO Lab QAO & Sample Administrator H-GAC Data Mgr &/or H-GAC QAO CRP Data Manager &/or Field QAO Absence of electronic errors confirmed CRP Data Manager &/or Field QAO Sampling and analytical data gaps checked (e.g., all sites for which data are reported are on the CMS) CRP Data Manager &/or Field QAO CRP Data Manager &/or Field QAO Field QC results attached to data review checklist CRP Data Manager &/or Field QAO CRP Data Manager &/or Field QAO Lab QAO & Sample Administrator H-GAC Data Mgr H-GAC Data Mgr Lab QAO & Sample Administrator H-GAC Data Mgr	TCEQ Station ID number assigned			H-GAC Data Mgr
monitoring type(s) used correctly CRP Data Manager &/or Field QAO Absence of transcription error confirmed CRP Data Manager &/or Field QAO Absence of electronic errors confirmed CRP Data Manager &/or Field QAO Absence of electronic errors confirmed CRP Data Manager &/or Field QAO Sampling and analytical data gaps checked (e.g., all sites for which data are reported are on the CMS) Field QC results attached to data review checklist CRP Data Manager &/or Field QAO CRP Data Manager &/or Field QAO CRP Data Manager &/or Field QAO Lab QAO & Sample Administrator H-GAC Data Mgr H-GAC Data Mgr Lab QAO & Sample Administrator H-GAC Data Mgr				H-GAC Data Mgr
Absence of transcription error confirmed CRP Data Manager &/or Field QAO Absence of electronic errors confirmed CRP Data Manager &/or Field QAO CRP Data Manager &/or Field QAO Lab QAO & Sample Administrator H-GAC Data Mgr				H-GAC Data Mgr
Absence of electronic errors confirmed Absence of electronic errors confirmed CRP Data Manager &/or Field QAO Sampling and analytical data gaps checked (e.g., all sites for which data are reported are on the CMS) Eab QAO & Sample Administrator H-GAC Data Mgr Lab QAO & Sample Administrator H-GAC Data Mgr Lab QAO & Sample Administrator H-GAC Data Mgr Eab QAO & Sample Administrator H-GAC Data Mgr Lab QAO & Sample Administrator H-GAC Data Mgr	Time based on 24-hour clock		Lab QAO & Sample Administrator	
Sampling and analytical data gaps checked (e.g., all sites for which data are reported are on the CMS) Field QC results attached to data review checklist CRP Data Manager &/or Field QAO CRP Data Manager &/or Field QAO CRP Data Manager &/or Field QAO Lab QAO & Sample Administrator H-GAC Data Mgr	Absence of transcription error confirmed		Lab QAO & Sample Administrator	H-GAC Data Mgr
sites for which data are reported are on the CMS) &/or Field QAO Lab QAO & Sample Administrator H-GAC Data Mgr Field QC results attached to data review checklist CRP Data Manager &/or Field QAO Lab QAO H-GAC Data Mgr Lab QAO Lab QAO H-GAC DATA Mgr Lab QAO Resemble Administrator H-GAC QAO		&/or Field QAO	Lab QAO & Sample Administrator	H-GAC Data Mgr
**Sor Field QAO Lab QAO H-GAC Data Mgr 4.0% of data manually raviewed CRP Data Manager Lab QAO & Sample Administrator H-GAC QAO		&/or Field QAO	Lab QAO & Sample Administrator	H-GAC Data Mgr
	Field QC results attached to data review checklist		Lab QAO	H-GAC Data Mgr
	10% of data manually reviewed		Lab QAO & Sample Administrator	H-GAC QAO

Table D2.1c: Data Review Tasks for City of Houston - Houston

Health Department (HHD)

HHD Data to be Verified	Field	Laboratory	H-GAC QAO or Data
	Tasks	Tasks	Manager Tasks
Sample documentation complete; samples labeled, sites identified	Field QAO	Appropriate Analytical Staff	
Field instrument pre- and post-calibration results within limits	Field QAO		H-GAC Data Mgr &/or H-GAC QAO
Field QC samples collected for all analytes as prescribed in the TCEQ SWQM Procedures Manual	Field Personnel on each run		
Field documentation (e.g., biological, stream habitat) complete	Data Manager		
Standards and reagents traceable	Field QAO	Lab Supervisors, Lab QAO, Analysts	
Chain of custody complete/acceptable	Data Manager	Receiving analyst – rotation schedule	H-GAC Data Mgr &/or H-GAC QAO
NELAP Accreditation is current		Laboratory Manager	H-GAC Data Mgr &/or H-GAC QAO
Sample preservation and handling acceptable		Lab Supervisors & Lab QAO	H-GAC Data Mgr &/or H-GAC QAO
Holding times not exceeded		Lab Supervisors, Lab QAO, Analysts	H-GAC Data Mgr &/or H-GA QAO
Collection, preparation, and analysis consistent with SOPs and QAPP	Field QAO	Lab Supervisors, Lab QAO & Analysts	H-GAC QAO
Instrument calibration data complete	Data Manager	Lab Supervisors, Lab QAO, & Analysts	
Bacteriological records complete		Lab Supervisors or Analysts	H-GAC Data Mgr &/or H-GAC QAO
QC samples analyzed at required frequency		Lab QAO	H-GAC Data Mgr
QC results meet performance and program specifications		Lab Manager	H-GAC Data Mgr
Analytical sensitivity (Limits of Quantitation/Ambient Water Reporting Limits) consistent with QAPP		Lab Supervisors & Lab QAO	H-GAC Data Mgr &/or H-GAC QAO
Results, calculations, transcriptions checked		Analysts &Lab Supervisors	
Laboratory bench-level review performed		Lab Supervisors & Lab QAO	
All laboratory samples analyzed for all parameters		Lab QAO	
Corollary data agree		Lab Supervisors & Lab QAO	H-GAC Data Mgr
Nonconforming activities documented	Field QAO	Lab Supervisors & Lab QAO	H-GAC QAO
Outliers confirmed and documented; reasonableness check performed	Data Manager		H-GAC Data Mgr &/or H-GAC QAO
Dates formatted correctly	Data Manager		H-GAC Data Mgr &/or H-GAC QAO
Depth reported correctly	Data Manager		H-GAC Data Mgr &/or H-GAC QAO
TAG IDs correct			H-GAC Data Mgr
TCEQ Station ID number assigned			H-GAC Data Mgr
Valid parameter codes		Lab Supervisors	H-GAC Data Mgr
Codes for submitting & collecting entity(ies) and monitoring type(s) used correctly			H-GAC Data Mgr
Time based on 24-hour clock	Data Manager		H-GAC Data Mgr &/or H-GAC QAO
Absence of transcription error confirmed	Data Manager	Lab Supervisors	H-GAC Data Mgr
Absence of electronic errors confirmed	Data Manager	Lab Supervisors	H-GAC Data Mgr
Sampling and analytical data gaps checked (e.g., all sites for which data are reported are on the CMS)	Field QAO	Lab QAO & Lab Manager	H-GAC Data Mgr
Field QC results attached to data review checklist		Lab QAO	H-GAC Data Mgr
10% of data manually reviewed	Data Manager		H-GAC QAO

Table D2.1d: Data Review Tasks for City of Houston – Drinking Water Operations (DWO)

DWO Data to be Verified	Field Task	Laboratory Task	H-GAC QAO or Data Manager Tasks H-GAC Data Mgr &/or H-GAC QAO H-GAC Data Mgr H-GAC Data Mgr H-GAC Data Mgr H-GAC Data Mgr H-GAC QAO H-GAC Data Mgr &/or H-GAC Data Mgr
Sample documentation complete; samples labeled, sites identified	Field QAO	Sample Custodian	J
Field instrument pre- and post-calibration results within limits	Field QAO		8 ,
Field QC samples collected for all analytes as prescribed in the TCEQ SWQM Procedures Manual	Field QAO	Sample Custodian	
Field documentation (e.g., biological, stream habitat) complete	Field Data Manager & Field QAO	Sample Custodian	
Standards and reagents traceable	Field QAO	Lab Supervisor	
Chain of custody complete/acceptable	Field QAO	Sample Custodian	<i>o</i> ,
NELAP Accreditation is current		Lab QA Manager	υ,
Sample preservation and handling acceptable		Sample custodian	υ,
Holding times not exceeded	Field QAO	Lab QA Manager / Lab Data Mgr.	0 ,
Collection, preparation, and analysis consistent with SOPs and QAPP	Field Supervisor & Field QAO	Lab QA Manager	H-GAC QAO
Instrument calibration data complete	Field Supervisor & Field Data Manager	Chemists	
Bacteriological records complete		Microbiologist I	0 ,
QC samples analyzed at required frequency		Laboratory Mgr.	H-GAC Data Mgr
QC results meet performance and program specifications		Laboratory Mgr.	H-GAC Data Mgr
Analytical sensitivity (Limits of Quantitation/Ambient Water Reporting Limits) consistent with QAPP		Laboratory Mgr.	<i>O</i> ,
Results, calculations, transcriptions checked		Laboratory Mgr.	
Laboratory bench-level review performed		Laboratory Mgr.	
All laboratory samples analyzed for all parameters	Field Supervisor & Field QAO	Lab Supervisor	
Corollary data agree		Lab QA Manager	H-GAC Data Mgr
Nonconforming activities documented	Field QAO	Lab QA Manager	H-GAC QAO
Outliers confirmed and documented; reasonableness sheck performed	Field Data Manager & Field QAO	Lab QA Manager	
Dates formatted correctly	Field Data Manager & Field QAO	Lab Data Manager	
Depth reported correctly	Field Data Manager	Lab Data Manager	.
ΓAG IDs correct			H-GAC Data Mgr
TCEQ Station ID number assigned	Field Data Manager & Field QAO	Lab Data Manager	H-GAC Data Mgr
Valid parameter codes	Field Data Manager	Lab Data Manager	H-GAC Data Mgr
Codes for submitting & collecting entity(ies) and nonitoring type(s) used correctly			H-GAC Data Mgr
Fime based on 24-hour clock	Field Data Manager & Field QAO	Lab Data Manager	
Absence of transcription error confirmed	Field Data Manager & Field QAO	Lab QA Manager	H-GAC Data Mgr
Absence of electronic errors confirmed	Field Data Manager	Lab QA Manager	H-GAC Data Mgr
Sampling and analytical data gaps checked (e.g., all sites for which data are reported are on the CMS)	Field Supervisor & Field Data Manager	Lab QA Manager	H-GAC Data Mgr
Field QC results attached to data review checklist	Field QAO	Lab QA Manager	H-GAC Data Mgr
10% of data manually reviewed	Field QAO	Lab Mgr. or Lab QA Manager	H-GAC QAO

Table D2.1e: Data Review Tasks for San Jacinto River Authoritysamples from Lake Conroe and analyzed by DWO Lab

SJRA Data to be Verified	Field Task (SJRA-Lake Conroe data)	Laboratory Task (DWO Lab)	H-GAC QAO or Data Manager Tasks
Sample documentation complete; samples labeled, sites identified	SJRA QAO	Sample Custodian	
Field instrument pre- and post-calibration results within limits	SJRA QAO		H-GAC Data Mgr &/or H-GAC QAO
Field QC samples collected for all analytes as prescribed in the TCEQ SWQM Procedures Manual	SJRA QAO	Sample Custodian	
Field documentation (e.g., biological, stream habitat) complete	SJRA QAO	Sample Custodian	
Standards and reagents traceable	SJRA QAO	Lab Supervisor	
Chain of custody complete/acceptable	SJRA QAO	Sample Custodian	H-GAC Data Mgr &/or H-GAC QAO
NELAP Accreditation is current		Lab QA Mgr.	H-GAC Data Mgr &/or H-GAC QAO
Sample preservation and handling acceptable		Sample Custodian.	H-GAC Data Mgr &/or H-GAC QAO
Holding times not exceeded	SJRA Data Manager	Lab QA Manager / Lab Data Mgr.	H-GAC Data Mgr &/or H-GA QAO
Collection, preparation, and analysis consistent with SOPs and QAPP	SJRA QAO	Lab QA Mgr.	H-GAC QAO
Instrument calibration data complete	SJRA Data Manager	Chemists	
Bacteriological records complete		Microbiologist I	H-GAC Data Mgr &/or H-GAC QAO
QC samples analyzed at required frequency		Laboratory Mgr.	H-GAC Data Mgr
QC results meet performance and program specifications		Laboratory Mgr.	H-GAC Data Mgr
Analytical sensitivity (Limits of Quantitation/Ambient Water Reporting Limits) consistent with QAPP		Laboratory Mgr.	H-GAC Data Mgr &/or H-GAC QAO
Results, calculations, transcriptions checked		Laboratory Mgr.	
Laboratory bench-level review performed		Laboratory Mgr.	
All laboratory samples analyzed for all parameters		Lab Supervisor	
Corollary data agree		Lab QA Mgr.	H-GAC Data Mgr
Nonconforming activities documented	SJRA QAO	Lab QA Mgr.	H-GAC QAO
Outliers confirmed and documented; reasonableness check performed	SJRA Data Manager	Lab QA Mgr.	H-GAC Data Mgr &/or H-GAC QAO
Dates formatted correctly	SJRA Data Manager	Lab Data Manager	H-GAC Data Mgr &/or H-GAC QAO
Depth reported correctly	SJRA Data Manager	Lab Data Manager	H-GAC Data Mgr &/or H-GAC QAO
TAG IDs correct		-	H-GAC Data Mgr
ГСЕQ Station ID number assigned	SJRA Data Manager	Lab Data Manager	H-GAC Data Mgr
Valid parameter codes	SJRA Data Manager	Lab Data Manager	H-GAC Data Mgr
Codes for submitting & collecting entity(ies), and monitoring type(s) used correctly			H-GAC Data Mgr
Time based on 24-hour clock	SJRA Data Manager	Lab Data Manager	H-GAC Data Mgr &/or H-GAC QAO
Absence of transcription error confirmed	SJRA Data Manager & QAO	Lab QA Mgr.	H-GAC Data Mgr
Absence of electronic errors confirmed	SJRA Data Manager	Lab QA Mgr.	H-GAC Data Mgr
Sampling and analytical data gaps checked (e.g., all sites for which data are reported are on the CMS)	SJRA Data Manager	Lab QA Mgr.	H-GAC Data Mgr
Field QC results attached to data review checklist	SJRA QAO	Lab QA Mgr.	H-GAC Data Mgr
10% of data manually reviewed	SJRA QAO	Lab Mgr. or Lab QA Mgr.	H-GAC QAO

Table D2.1f: Data Review Tasks for San Jacinto River Authoritysamples from The Woodlands area and analyzed by Eastex Lab

samples from The Woodla			
SJRA Data to be Verified	Field Task (SJRA – Woodlands data)	Laboratory Task (Eastex Lab)	H-GAC QAO or Data Manager Tasks
Sample documentation complete; samples labeled, sites identified	SJRA QAO	Sample Custodian	
Field instrument pre- and post-calibration results within limits	SJRA QAO		H-GAC Data Mgr &/or H-GAC QAO
Field QC samples collected for all analytes as prescribed in the TCEQ SWQM Procedures Manual	SJRA QAO		
Field documentation (e.g., biological, stream habitat) complete	SJRA QAO		
Standards and reagents traceable	SJRA QAO	Lab QAO	
Chain of custody complete/acceptable	SJRA QAO	Sample Custodian	H-GAC Data Mgr &/or H-GAC QAO
NELAP Accreditation is current		Lab QAO	H-GAC Data Mgr &/or H-GAC QAO
Sample preservation and handling acceptable		Sample Custodian	H-GAC Data Mgr &/or H-GAC QAO
Holding times not exceeded	SJRA Data Manager	Lab QAO	H-GAC Data Mgr &/or H-GA QAO
Collection, preparation, and analysis consistent with SOPs and QAPP	SJRA QAO	Lab QAO	H-GAC QAO
Instrument calibration data complete	SJRA Data Manager	Lab QAO	
Bacteriological records complete		Lab QAO	H-GAC Data Mgr &/or H-GAC QAO
QC samples analyzed at required frequency		Lab QAO	H-GAC Data Mgr
QC results meet performance and program specifications		Lab QAO	H-GAC Data Mgr
Analytical sensitivity (Limits of Quantitation/Ambient Water Reporting Limits) consistent with QAPP		Lab QAO	H-GAC Data Mgr &/or H-GAC QAO
Results, calculations, transcriptions checked		Tech. Dir.	
Laboratory bench-level review performed		Head Technician	
All laboratory samples analyzed for all parameters		Lab QAO	
Corollary data agree		Lab QAO	H-GAC Data Mgr
Nonconforming activities documented	SJRA QAO	Lab QAO	H-GAC QAO
Outliers confirmed and documented; reasonableness check performed	SJRA Data Manager	Data Manager & Lab QAO	H-GAC Data Mgr &/or H-GAC QAO
Dates formatted correctly	SJRA Data Manager		H-GAC Data Mgr &/or H-GAC QAO
Depth reported correctly	SJRA Data Manager		H-GAC Data Mgr &/or H-GAC QAO
TAG IDs correct			H-GAC Data Mgr
TCEQ Station ID number assigned	SJRA Data Manager	Data Manager & Lab QAO	H-GAC Data Mgr
Valid parameter codes	SJRA Data Manager	Data Manager & Lab QAO	H-GAC Data Mgr
Codes for submitting & collecting entity(ies), and monitoring type(s) used correctly			H-GAC Data Mgr
Time based on 24-hour clock	SJRA Data Manager	Data Manager	H-GAC Data Mgr &/or H-GAC QAO
Absence of transcription error confirmed	SJRA Data Manager & QAO	Tech. Dir.	H-GAC Data Mgr
Absence of electronic errors confirmed	SJRA Data Manager	Tech. Dir.	H-GAC Data Mgr
Sampling and analytical data gaps checked (e.g., all sites for which data are reported are on the CMS)	SJRA Data Manager	Data Manager	H-GAC Data Mgr
Field QC results attached to data review checklist	SJRA QAO		H-GAC Data Mgr
10% of data manually reviewed	SJRA QAO	Tech. Dir.	H-GAC QAO

Table D2.1g: Data Review Tasks for Environmental Institute of Houston (EIH) with samples analyzed by Eastex Lab

EIH Data to be Verified	Field	Eastex Lab	H-GAC QAO or Data
EIH Data to be verified	Task	Task	Manager Tasks
Sample documentation complete; samples labeled, sites dentified	CRP Data Mgr & Field QAO	Sample Custodian	
Field instrument pre- and post-calibration results within limits	Field QAO		H-GAC Data Mgr &/or H-GAC QAO
Field QC samples collected for all analytes as prescribed in the TCEQ SWQM Procedures Manual	CRP Data Mgr & Field QAO		
Field documentation (e.g., biological, stream habitat)	Field QAO & CRP Data Manager		
Standards and reagents traceable	Field QAO	Lab QAO	
Chain of custody complete/acceptable	CRP Data Mgr & Field QAO	Sample Custodian	H-GAC Data Mgr &/or H-GAC QAO
NELAP Accreditation is current		Lab QAO	H-GAC Data Mgr &/or H-GAC QAO
Sample preservation and handling acceptable		Sample Custodian	H-GAC Data Mgr &/or H-GAC QAO
Holding times not exceeded	Field QAO & CRP Data Mgr	Lab QAO	H-GAC Data Mgr &/or H-GA QAO
Collection, preparation, and analysis consistent with SOPs and QAPP	Field QAO	Lab QAO	H-GAC QAO
instrument calibration data complete	Field QAO or sample collector	Lab QAO	
Bacteriological records complete	Field QAO or sample collector	Lab QAO	H-GAC Data Mgr &/or H-GAC QAO
QC samples analyzed at required frequency	Field QAO or sample collector	Lab QAO	H-GAC Data Mgr
QC results meet performance and program specifications	Field QAO & CRP Data Mgr	Lab QAO	H-GAC Data Mgr
Analytical sensitivity (Limits of Quantitation/Ambient Water Reporting Limits) consistent with QAPP	Field QAO & CRP Data Mgr	Lab QAO	H-GAC Data Mgr &/or H-GAC QAO
Results, calculations, transcriptions checked	Field QAO & CRP Data Mgr	Tech. Dir.	
Laboratory bench-level review performed		Head Technician	
All laboratory samples analyzed for all parameters		Lab QAO	
Corollary data agree		Lab QAO	H-GAC Data Mgr
Nonconforming activities documented	Field QAO	Lab QAO	H-GAC QAO
Outliers confirmed and documented; reasonableness check performed	Field QAO & CRP Data Mgr	Data Manager & Lab QAO	H-GAC Data Mgr &/or H-GAC QAO
Dates formatted correctly	Field QAO & CRP Data Mgr		H-GAC Data Mgr &/or H-GAC QAO
Depth reported correctly	Field QAO & CRP Data Mgr		H-GAC Data Mgr &/or H-GAC QAO
ΓAG IDs correct			H-GAC Data Mgr
CCEQ Station ID number assigned	Field QAO & CRP Data Mgr	Data Manager & Lab QAO	H-GAC Data Mgr
Valid parameter codes	Field QAO & CRP Data Mgr	Data Manager & Lab QAO	H-GAC Data Mgr
Codes for submitting & collecting entity(ies), and monitoring type(s) used correctly	Field QAO & CRP Data Mgr		H-GAC Data Mgr
Fime based on 24-hour clock	Field QAO & CRP Data Mgr	Data Manager	H-GAC Data Mgr &/or H-GAC QAO
Absence of transcription error confirmed	Field QAO & CRP Data Mgr	Tech. Dir.	H-GAC Data Mgr
Absence of electronic errors confirmed	Field QAO & CRP Data Mgr	Tech. Dir.	H-GAC Data Mgr
Sampling and analytical data gaps checked (e.g., all sites for which data are reported are on the CMS)	Field QAO & CRP Data Mgr	Data Manager	H-GAC Data Mgr
Field QC results attached to data review checklist	Field QAO & CRP Data Mgr		H-GAC Data Mgr
10% of data manually reviewed	Field QAO & CRP Data Mgr	Tech. Dir.	H-GAC QAO

Table D2.1h: Data Review Tasks for the Texas Research Institute for Environmental Studies (TRIES)

TRIES Data to be Verified	Field Tasks	Laboratory Tasks - TRIES	Laboratory Tasks - Eastex Lab	H-GAC. QAO or Data Manager Tasks
Sample documentation complete; samples labeled, sites identified	TRIES Field QAO	Sample Custodian	Sample Custodian.	
Field instrument pre- and post-calibration results within limits	TRIES Field QAO			H-GAC Data Mgr &/or H-GAC QAO
Field QC samples collected for all analytes as prescribed in the TCEQ SWQM Procedures Manual	TRIES Field QAO			
Field documentation (e.g., biological, stream habitat) complete	TRIES Field QAO			
Standards and reagents traceable	TRIES Field QAO	Lab QAO	Lab QAO	
Chain of custody complete/acceptable	TRIES Field QAO	Sample Custodian	Sample Custodian	H-GAC Data Mgr &/or H-GAC QAO
NELAP Accreditation is current		LAB QAO	Lab QAO	H-GAC Data Mgr &/or H-GAC QAO
Sample preservation and handling acceptable	TRIES Field QAO	Sample Custodian	Sample Custodian	H-GAC Data Mgr &/or H-GAC QAO
Holding times not exceeded		Sample Custodian	Lab QAO	H-GAC Data Mgr &/or H-GA QAO
Collection, preparation, and analysis consistent with SOPs and QAPP	TRIES Field QAO	Lab QAO	Lab QAO	H-GAC QAO
Instrument calibration data complete	TRIES Field QAO	Lab QAO	Lab QAO	
Bacteriological records complete		Lab QAO	Lab QAO	H-GAC Data Mgr &/or H-GAC QAO
QC samples analyzed at required frequency	TRIES Field QAO	Lab QAO	Lab QAO	H-GAC Data Mgr
QC results meet performance and program specifications		Lab QAO	Lab QAO	H-GAC Data Mgr
Analytical sensitivity (Limits of Quantitation/Ambient Water Reporting Limits) consistent with QAPP		Lab QAO	Lab QAO	H-GAC Data Mgr &/or H-GAC QAO
Results, calculations, transcriptions checked	TRIES Field QAO	Analysts/Peer Review	Technical Director	
Laboratory bench-level review performed		Lab QAO	Head Technician	
All laboratory samples analyzed for all parameters		Lab QAO	Lab QAO	
Corollary data agree		Lab QAO	Lab QAO	H-GAC Data Mgr
Nonconforming activities documented	TRIES Field QAO	Lab QAO	Lab QAO	H-GAC QAO
Outliers confirmed and documented; reasonableness check performed	TRIES Field QAO	Lab QAO	Data Manager & Lab QAO	H-GAC Data Mgr &/or H-GAC QAO
Dates formatted correctly	TRIES Data Mgr	Lab QAO		H-GAC Data Mgr &/or H-GAC QAO
Depth reported correctly	TRIES Data Mgr			H-GAC Data Mgr &/or H-GAC QAO
TAG IDs correct				H-GAC Data Mgr
TCEQ Station ID number assigned	TRIES Data Mgr		Data Manager & Lab QAO	H-GAC Data Mgr
Valid parameter codes	TRIES Data Mgr		Data Manager & Lab QAO	H-GAC Data Mgr
Codes for submitting & collecting entity(ies), and monitoring type(s) used correctly	TRIES Data Mgr			H-GAC Data Mgr
Time based on 24-hour clock	TRIES Data Mgr	Lab QAO	Data Manager	H-GAC Data Mgr &/or H-GAC QAO
Absence of transcription error confirmed	TRIES Data Mgr	Lab QAO	Technical Director	H-GAC Data Mgr
Absence of electronic errors confirmed	TRIES Data Mgr		Technical Director	H-GAC Data Mgr
Sampling and analytical data gaps checked (e.g., all sites for which data are reported are on the CMS)	TRIES Data Mgr		Data Manager	H-GAC Data Mgr
Field QC results attached to data review checklist	TRIES Data Mgr			H-GAC Data Mgr
10% of data manually reviewed	TRIES Data Mgr	Lab QAO	Technical Director	H-GAC QAO

D3 Reconciliation with User Requirements

Data produced in this project, and data collected by other organizations (e.g., USGS, TCEQ, etc.), will be analyzed and reconciled with project data quality requirements. Data which do not meet requirements will not be submitted to SWQMIS nor will be considered appropriate for any of the uses noted in Section A5.

Appendix A: Measurement Performance Specifications (Table A7.1-8)

Measurement performance specifications define the data quality needed to satisfy project objectives. To this end, measurement performance specifications are qualitative and quantitative statements that:

- clarify the intended use of the data
- define the type of data needed to support the end use
- identify the conditions under which the data should be collected

Appendix A of the QAPP addresses measurement performance specifications, including:

- analytical methodologies
- AWRLs
- limits of quantitation
- bias limits for LCSs
- precision limits for LCSDs
- completeness goals
- qualitative statements regarding representativeness and comparability

The items identified above will be considered for each type of monitoring activity. The CRP encourages that data be collected to address multiple objectives to optimize resources; however, caution should be applied when attempting to collect data for multiple purposes because measurement performance specifications may vary according to the purpose. For example, limits of quantitation may differ for data used to assess standards attainment and for trend analysis. When planning projects, first priority will be given to the main use of the project data and the data quality needed to support that use, then secondary goals will be considered.

Tables in Appendix A have been modified to reflect actual parameters, methods, etc. employed by the H-GAC and its participants. Procedures for laboratory analysis must be in accordance with the most recently published edition of Standard Methods for the Examination of Water and Wastewater, 40 CFR 136, or otherwise approved independently. Only data collected that have a valid TCEQ parameter code assigned in Tables A7 are stored in SWQMIS. Any parameters listed in Tables A7 that do not have a valid TCEQ parameter code assigned will not be stored in SWQMIS.

Table A7.1 - Measurement Performance Specifications follow for:

- Houston-Galveston Area Council (H-GAC)
- Harris County Pollution Control Services (HCPCS)
- Houston Health Department (HHD)
- Houston Drinking Water Operations (DWO or HW)
- San Jacinto River Authority Lake Conroe Division (SJRA-LC)
- San Jacinto River Authority The Woodlands Division (SJRA-W)
- SHSU-Texas Research Institute for Environmental Studies (TRIES)
- UHCL-Environmental Institute of Houston (EIH)

TABLE A7.1a Measurement Performance Specifications for Houston-Galveston Area Council (H-GAC)								
Fiel	d Parameters	5	.					
Parameter*	Units	Matrix	Method	Parameter Code	Lab			
TEMPERATURE, WATER (DEGREES CENTIGRADE)	DEG C	water	SM 2550 B and TCEQ SOP V1	00010	Field			
TRANSPARENCY, SECCHI DISC (METERS)	meters	water	TCEQ SOP V1	00078	Field			
SPECIFIC CONDUCTANCE, FIELD (US/CM @ 25C)	us/cm	water	EPA 120.1 and TCEQ SOP, V1	00094	Field			
OXYGEN, DISSOLVED (MG/L)	mg/L	water	SM 4500-O G and TCEQ SOP V1	00300	Field			
PH (STANDARD UNITS)	s.u.	water	EPA 150.1 and TCEQ SOP V1	00400	Field			
DAYS SINCE PRECIPITATION EVENT (DAYS)	days	other	TCEQ SOP V1	72053	Field			
DEPTH OF BOTTOM OF WATER BODY AT SAMPLE SITE	meters	water	TCEQ SOP V2	82903	Field			
MAXIMUM POOL WIDTH AT TIME OF STUDY (METERS)**	meters	other	TCEQ SOP V2	89864	Field			
MAXIMUM POOL DEPTH AT TIME OF STUDY(METERS)**	meters	other	TCEQ SOP V2	89865	Field			
POOL LENGTH, METERS**	meters	other	TCEQ SOP V2	89869	Field			
% POOL COVERAGE IN 500 METER REACH**	%	other	TCEQ SOP V2	89870	Field			
WIND INTENSITY (1=CALM,2=SLIGHT,3=MOD.,4=STRONG)	NU	other	NA	89965	Field			
PRESENT WEATHER (1=CLEAR,2=PTCLDY,3=CLDY,4=RAIN,5=OTHER)	NU	other	NA	89966	Field			
WATER SURFACE(1=CALM,2=RIPPLE,3=WAVE,4=WHITECAP)	NU	water	NA	89968	Field			
WATER ODOR (1=SEWAGE, 2=OILY/CHEMICAL, 3=ROTTEN EGGS, 4=MUSKY, 5=FISHY, 6=NONE, 7=OTHER (WRITE IN COMMENTS))	NU	water	NA	89971	Field			
WATER COLOR 1=BRWN 2=RED 3=GRN 4=BLCK 5=CLR 6=OT	NU	water	NA	89969	Field			
WATER CLARITY (1=EXCELLENT, 2=GOOD, 3=FAIR, 4=POOR)	NU	water	NA	20424	Field			
TURBIDITY, OBSERVED (1=LOW, 2=MEDIUM, 3=HIGH)	NU	water	NA	88842	Field			

^{*} Reporting to be consistent with SWQM guidance and based on measurement capability.

United States Environmental Protection Agency (USEPA) Methods for Chemical Analysis of Water and Wastes, Manual #EPA-600/4-79-020 U.S. Code of Federal Regulations (CFR). Title 40: Protection of Environment, Part 136

American Public Health Association (APHA), American Water Works Association (AWWA), and Water Environment Federation (WEF), Standard Methods for the Examination of Water and Wastewater, 24th Edition, 2022.

TCEQ SOP, V1 - TCEQ Surface Water Quality Monitoring Procedures, Volume 1: Physical and Chemical Monitoring Methods, 2012 (RG-415).

^{**} To be routinely reported when collecting data from perennial pools.

TABLE A7.1b Measurement Performance Specifications for Houston-Galveston Area Council (H-GAC)								
Flow Paramet	ers							
Parameter	Units	Matrix	Method	Parameter Code	Lab			
FLOW STREAM, INSTANTANEOUS (CUBIC FEET PER SEC)	cfs	water	TCEQ SOP V1	00061	Field			
FLOW SEVERITY:1=No Flow,2=Low,3=Normal,4=Flood,5=High,6=Dry	NU	water	TCEQ SOP V1	01351	Field			
STREAM FLOW ESTIMATE (CFS)	cfs	water	TCEQ SOP V1	74069	Field			
FLOW MTH 1=GAGE 2=ELEC 3=MECH 4=WEIR/FLU 5=DOPPLER	NU	other	TCEQ SOP V1	89835	Field			

United States Environmental Protection Agency (USEPA) Methods for Chemical Analysis of Water and Wastes, Manual #EPA-600/4-79-020 U.S. Code of Federal Regulations (CFR). Title 40: Protection of Environment, Part 136

American Public Health Association (APHA), American Water Works Association (AWWA), and Water Environment Federation (WEF), Standard Methods for the Examination of Water and Wastewater, 24th Edition, 2022.

TABLE A7.1c Measurement Perfe	ormance	•				ea Cour	cil (H-GAC	C)		
Parameter	Units	Matrix	Method Sethod	Parameter Code	TCEQ AWRL	100	LOQ Check Sample %Rec	Precision (RPD)	Bias %Rec. of LCS	Lab
RESIDUE, TOTAL NONFILTRABLE (MG/L)	mg/L	water	SM 2540D	00530	5	1	NA	NA	NA	Eastex
NITROGEN, AMMONIA, TOTAL (MG/L AS N)	mg/L	water	SM 4500 NH3 G	00610	0.1	0.1	70-130	20	80-120	Eastex
NITRITE NITROGEN, TOTAL (MG/L AS N)	mg/L	water	EPA 300.0 Rev. 2.1 (1993)	00615	0.05	0.05	70-130	20	80-120	Eastex
NITRATE NITROGEN, TOTAL (MG/L AS N)	mg/L	water	EPA 300.0 Rev. 2.1 (1993)	00620	0.05	0.05	70-130	20	80-120	Eastex
NITROGEN, KJELDAHL, TOTAL (MG/L AS N)	mg/L	water	EPA 351.2	00625	0.2	0.2	70-130	20	80-120	Eastex
NITRITE PLUS NITRATE, TOTAL ONE LAB DETERMINED VALUE (MG/L AS N)	mg/L	water	SM 4500- NO3 F	00630	0.05	0.02	70-130	20	80-120	Eastex
PHOSPHORUS, TOTAL, WET METHOD (MG/L AS P)	mg/L	water	EPA 200.7	00665	0.06	0.06	70-130	20	80-120	Eastex
CHLORIDE (MG/L AS CL)	mg/L	water	EPA 300.0 Rev. 2.1 (1993)	00940	5	5	70-130	20	80-120	Eastex
SULFATE (MG/L AS SO4)	mg/L	water	EPA 300.0 Rev. 2.1 (1993)	00945	5	4	70-130	20	80-120	Eastex

United States Environmental Protection Agency (USEPA) Methods for Chemical Analysis of Water and Wastes, Manual #EPA-600/4-79-020 U.S. Code of Federal Regulations (CFR). Title 40: Protection of Environment, Part 136

American Public Health Association (APHA), American Water Works Association (AWWA), and Water Environment Federation (WEF), Standard Methods for the Examination of Water and Wastewater, 24th Edition, 2022.

TCEQ SOP, V1 - TCEQ Surface Water Quality Monitoring Procedures, Volume 1: Physical and Chemical Monitoring Methods, 2012 (RG-415).

TABLE A7.1d Measurement	TABLE A7.1d Measurement Performance Specifications for Houston-Galveston Area Council (H-GAC)									
	Bacteriological Parameters in Water									
Units Units Matrix Matrix Matrix CEQ AWRL LOQ Check Sample %Rec Log Difference of Duplicates bias %Rec. of LCS							Lab			
E.COLI, COLILERT, IDEXX METHOD, MPN/100ML	MPN/100 mL	water	IDEXX Colilert or Colilert 18**	31699	1	1	NA	0.50*	NA	Eastex
E.COLI, COLILERT, IDEXX, HOLDING TIME	hours	water	NA	31704	NA	NA	NA	NA	NA	Eastex

^{*} This value is not expressed as a relative percent difference. It represents the maximum allowable difference between the logarithm of the result of a sample and the logarithm of the duplicate result. See Section B5.

United States Environmental Protection Agency (USEPA) Methods for Chemical Analysis of Water and Wastes, Manual #EPA-600/4-79-020 U.S. Code of Federal Regulations (CFR). Title 40: Protection of Environment, Part 136

American Public Health Association (APHA), American Water Works Association (AWWA), and Water Environment Federation (WEF), Standard Methods for the Examination of Water and Wastewater, 24th Edition, 2022.

^{**} E. coli samples analyzed by these methods should always be processed as soon as possible and within 8 hours. When transport conditions necessitate delays in delivery longer than 6 hours, the holding time may be extended and samples must be processed as soon as possible and within 30 hours.

TABLE A7.1e Measurement Performance Specifications	TABLE A7.1e Measurement Performance Specifications for Houston-Galveston Area Council (H-GAC)									
24 Hour Param	eters in Water	•	T	T	1					
Parameter	Units	Matrix	Method	Parameter Code	Lab					
TEMPERATURE, WATER (DEGREES CENTIGRADE), 24HR AVG	DEG C	Water	TCEQ SOP V1	00209	field					
WATER TEMPERATURE, DEGREES CENTIGRADE, 24HR MAX	DEG C	Water	TCEQ SOP V1	00210	field					
TEMPERATURE, WATER (DEGREES CENTIGRADE) 24HR MIN	DEG C	Water	TCEQ SOP V1	00211	field					
SPECIFIC CONDUCTANCE, US/CM, FIELD, 24HR AVG	uS/cm	Water	TCEQ SOP V1	00212	field					
SPECIFIC CONDUCTANCE, US/CM, FIELD, 24HR MAX	uS/cm	Water	TCEQ SOP V1	00213	field					
SPECIFIC CONDUCTANCE, US/CM, FIELD, 24HR MIN	uS/cm	Water	TCEQ SOP V1	00214	field					
PH, S.U., 24HR MAXIMUM VALUE	std. units	Water	TCEQ SOP V1	00215	field					
PH, S.U., 24HR, MINIMUM VALUE	std. units	Water	TCEQ SOP V1	00216	field					
SALINITY, 24-HR, MAXIMUM, PPT	ppt	Water	TCEQ SOP V1	00217	field					
SALINITY, 24-HR, AVERAGE, PPT	ppt	Water	TCEQ SOP V1	00218	field					
SALINITY, 24-HR, MINIMUM, PPT	ppt	Water	TCEQ SOP V1	00219	field					
SALINITY, # OF MEASUREMENTS IN 24-HRS	NU	Water	TCEQ SOP V1	00220	field					
WATER TEMPERATURE, # OF MEASUREMENTS IN 24-HRS	NU	Water	TCEQ SOP V1	00221	field					
SPECIFIC CONDUCTANCE, # OF MEASUREMENTS IN 24-HRS	NU	Water	TCEQ SOP V1	00222	field					
pH, # OF MEASUREMENTS IN 24-HRS	NU	Water	TCEQ SOP V1	00223	field					
DISSOLVED OXYGEN, 24-HOUR MIN. (MG/L) MIN. 4 MEA	mg/l	Water	TCEQ SOP V1	89855	field					
DISSOLVED OXYGEN, 24-HOUR MAX. (MG/L) MIN. 4 MEA	mg/l	Water	TCEQ SOP V1	89856	field					
DISSOLVED OXYGEN, 24-HOUR AVG. (MG/L) MIN. 4 MEA	mg/l	Water	TCEQ SOP V1	89857	field					
DISSOLVED OXYGEN, # OF MEASUREMENTS IN 24-HRS	NU	Water	TCEQ SOP V1	89858	field					

United States Environmental Protection Agency (USEPA) Methods for Chemical Analysis of Water and Wastes, Manual #EPA-600/4-79-020 U.S. Code of Federal Regulations (CFR). Title 40: Protection of Environment, Part 136

American Public Health Association (APHA), American Water Works Association (AWWA), and Water Environment Federation (WEF), Standard Methods for the Examination of Water and Wastewater, 24th Edition, 2022.

TABLE A7.2a Measurement Performance Specification			Pollution Control Serv	ices (HCPCS)	
Fie	ld Paramete	rs			T .
Parameter*	Units	Matrix	Method	Parameter Code	Lab
TEMPERATURE, WATER (DEGREES CENTIGRADE)	DEG C	water	SM 2550 B and TCEQ SOP V1	00010	Field
TRANSPARENCY, SECCHI DISC (METERS)	meters	water	TCEQ SOP V1	00078	Field
SPECIFIC CONDUCTANCE, FIELD (US/CM @ 25C)	us/cm	water	EPA 120.1 and TCEQ SOP, V1	00094	Field
OXYGEN, DISSOLVED (MG/L)	mg/L	water	SM 4500-O G and TCEQ SOP V1	00300	Field
PH (STANDARD UNITS)	s.u.	water	EPA 150.1 and TCEQ SOP V1	00400	Field
SALINITY - PARTS PER THOUSAND	PPT	water	SM 2520 and TCEQ SOP V1	00480	Field
DAYS SINCE PRECIPITATION EVENT (DAYS)	days	other	TCEQ SOP V1	72053	Field
DEPTH OF BOTTOM OF WATER BODY AT SAMPLE SITE	meters	water	TCEQ SOP V2	82903	Field
WIND INTENSITY (1=CALM,2=SLIGHT,3=MOD.,4=STRONG)	NU	other	NA	89965	Field
PRESENT WEATHER (1=CLEAR,2=PTCLDY,3=CLDY,4=RAIN,5=OTHER)	NU	other	NA	89966	Field
WATER SURFACE(1=CALM,2=RIPPLE,3=WAVE,4=WHITECAP)	NU	water	NA	89968	Field
TIDE STAGE 1=LOW,2=FALLING,3=SLACK,4=RISING,5=HI	NU	water	NA	89972	Field
WATER ODOR (1=SEWAGE, 2=OILY/CHEMICAL, 3=ROTTEN EGGS, 4=MUSKY, 5=FISHY, 6=NONE, 7=OTHER (WRITE IN COMMENTS))	NU	water	NA	89971	Field
WATER COLOR 1=BRWN 2=RED 3=GRN 4=BLCK 5=CLR 6=OT	NU	water	NA	89969	Field
TURBIDITY, OBSERVED (1=LOW, 2=MEDIUM, 3=HIGH)	NU	water	NA	88842	Field

^{*} Reporting to be consistent with SWQM guidance and based on measurement capability.

United States Environmental Protection Agency (USEPA) Methods for Chemical Analysis of Water and Wastes, Manual #EPA-600/4-79-020 U.S. Code of Federal Regulations (CFR). Title 40: Protection of Environment, Part 136

American Public Health Association (APHA), American Water Works Association (AWWA), and Water Environment Federation (WEF), Standard Methods for the Examination of Water and Wastewater, 24th Edition, 2022.

TABLE A7.2b Measurement Pe	TABLE A7.2b Measurement Performance Specifications for Harris County Pollution Control Services (HCPCS)									
		Convent	ional Param	eters in V	Vater					
Parameter	Units	Matrix	Method	Parameter Code	TCEQ AWRL	700	LOQ Check Sample %Rec	Precision (RPD)	Bias %Rec. of LCS	Lab
RESIDUE, TOTAL NONFILTRABLE (MG/L)	mg/L	water	SM 2540D	00530	5	4	NA	NA	NA	HCPCS
NITROGEN, AMMONIA, TOTAL (MG/L AS N)	mg/L	water	SM4500 NH3-D	00610	0.1	0.1	70- 130	20	85- 115	HCPCS
NITROGEN, KJELDAHL, TOTAL (MG/L AS N)	mg/L	water	EPA 351.2	00625	0.2	0.2	70- 130	20	80- 120	Eastex
NITRITE PLUS NITRATE, TOTAL ONE LAB DETERMINED VALUE (MG/L AS N)	mg/L	water	SM 4500- NO3 F	00630	0.05	0.04	70- 130	20	85- 115	HCPCS
PHOSPHORUS, TOTAL, WET METHOD (MG/L AS P)	mg/L	water	SM 4500- P E	00665	0.06	0.02	70- 130	20	85- 115	HCPCS
CHLOROPHYLL-A UG/L SPECTROPHOTOMETRIC ACID. METH	ug/L	water	EPA 446.0	32211	3	3	NA	20	80- 120	Eastex

United States Environmental Protection Agency (USEPA) Methods for Chemical Analysis of Water and Wastes, Manual #EPA-600/4-79-020 U.S. Code of Federal Regulations (CFR). Title 40: Protection of Environment, Part 136

American Public Health Association (APHA), American Water Works Association (AWWA), and Water Environment Federation (WEF), Standard Methods for the Examination of Water and Wastewater, 24th Edition, 2022.

TABLE A7.2c Measur	rement Perfo	•	ecification ecteriologic			•	n Contro	l Services	(HCPCS)	
Parameter	Units	Matrix	Method	Parameter Code	TCEQ AWRL	001	LOQ Check Sample %Rec	Log Difference of Duplicates	Bias %Rec. of LCS	Lab
ENTEROCOCCI, ENTEROLERT, IDEXX, (MPN/100 ML)	MPN/100 mL	water	ASTM D-6503	31701	10***	10***	NA	0.50*	NA	HCPCS

^{*} This value is not expressed as a relative percent difference. It represents the maximum allowable difference between the logarithm of the result of a sample and the logarithm of the duplicate result. See Section B5.

United States Environmental Protection Agency (USEPA) Methods for Chemical Analysis of Water and Wastes, Manual #EPA-600/4-79-020 U.S. Code of Federal Regulations (CFR). Title 40: Protection of Environment, Part 136

American Public Health Association (APHA), American Water Works Association (AWWA), and Water Environment Federation (WEF), Standard Methods for the Examination of Water and Wastewater, 24th Edition, 2022.

TCEQ SOP, V1 - TCEQ Surface Water Quality Monitoring Procedures, Volume 1: Physical and Chemical Monitoring Methods, 2012 (RG-415). TCEQ SOP, V2 - TCEQ Surface Water Quality Monitoring Procedures, Volume 2: Methods for Collecting and Analyzing Biological Assemblage and

Habitat Data, 2014 (RG-416).

^{***}Enterococcus Samples should be diluted 1:10 for all waters.

TABLE A7.3a Measurement Performance Specifications for	or Houston H	ealth De	partment (HHD)		
Field P	arameters	1	T		
Parameter*	Units	Matrix	Method	Parameter Code	Lab
TEMPERATURE, WATER (DEGREES CENTIGRADE)	DEG C	water	SM 2550 B and TCEQ SOP V1	00010	Field
TRANSPARENCY, SECCHI DISC (METERS)	meters	water	TCEQ SOP V1	00078	Field
SPECIFIC CONDUCTANCE, FIELD (US/CM @ 25C)	us/cm	water	EPA 120.1 and TCEQ SOP, V1	00094	Field
OXYGEN, DISSOLVED (MG/L)	mg/L	water	SM 4500-O G and TCEQ SOP V1	00300	Field
PH (STANDARD UNITS)	s.u.	water	EPA 150.1 and TCEQ SOP V1	00400	Field
SALINITY - PARTS PER THOUSAND	PPT	water	SM 2520 and TCEQ SOP V1	00480	Field
DAYS SINCE PRECIPITATION EVENT (DAYS)	days	other	TCEQ SOP V1	72053	Field
DEPTH OF BOTTOM OF WATER BODY AT SAMPLE SITE	meters	water	TCEQ SOP V2	82903	Field
MAXIMUM POOL WIDTH AT TIME OF STUDY (METERS)**	meters	other	TCEQ SOP V2	89864	Field
MAXIMUM POOL DEPTH AT TIME OF STUDY(METERS)**	meters	other	TCEQ SOP V2	89865	Field
POOL LENGTH, METERS**	meters	other	TCEQ SOP V2	89869	Field
% POOL COVERAGE IN 500 METER REACH**	%	other	TCEQ SOP V2	89870	Field
WIND INTENSITY (1=CALM,2=SLIGHT,3=MOD.,4=STRONG)	NU	other	NA	89965	Field
PRESENT WEATHER (1=CLEAR,2=PTCLDY,3=CLDY,4=RAIN,5=OTHER)	NU	other	NA	89966	Field
WATER SURFACE(1=CALM,2=RIPPLE,3=WAVE,4=WHITECAP)	NU	water	NA	89968	Field
TIDE STAGE 1=LOW,2=FALLING,3=SLACK,4=RISING,5=HI	NU	water	NA	89972	Field
WATER ODOR (1=SEWAGE, 2=OILY/CHEMICAL, 3=ROTTEN EGGS, 4=MUSKY, 5=FISHY, 6=NONE, 7=OTHER (WRITE IN COMMENTS))	NU	water	NA	89971	Field
WATER COLOR 1=BRWN 2=RED 3=GRN 4=BLCK 5=CLR 6=OT	NU	water	NA	89969	Field

^{*} Reporting to be consistent with SWQM guidance and based on measurement capability.

United States Environmental Protection Agency (USEPA) Methods for Chemical Analysis of Water and Wastes, Manual #EPA-600/4-79-020 U.S. Code of Federal Regulations (CFR). Title 40: Protection of Environment, Part 136

American Public Health Association (APHA), American Water Works Association (AWWA), and Water Environment Federation (WEF), Standard Methods for the Examination of Water and Wastewater, 24th Edition, 2022.

TCEQ SOP, V1 - TCEQ Surface Water Quality Monitoring Procedures, Volume 1: Physical and Chemical Monitoring Methods, 2012 (RG-415).

^{**} To be routinely reported when collecting data from perennial pools.

TABLE A7.3b Measurement Performance Specifications for H	ouston	Health D	epartment (HHI	D)	
Flow Paramete	rs				
Parameter	Units	Matrix	Method	Parameter Code	Lab
FLOW STREAM, INSTANTANEOUS (CUBIC FEET PER SEC)	cfs	water	TCEQ SOP V1	00061	Field
FLOW SEVERITY:1=No Flow,2=Low,3=Normal,4=Flood,5=High,6=Dry	NU	water	TCEQ SOP V1	01351	Field
FLOW MTH 1=GAGE 2=ELEC 3=MECH 4=WEIR/FLU 5=DOPPLER	NU	other	TCEQ SOP V1	89835	Field

United States Environmental Protection Agency (USEPA) Methods for Chemical Analysis of Water and Wastes, Manual #EPA-600/4-79-020 U.S. Code of Federal Regulations (CFR). Title 40: Protection of Environment, Part 136

American Public Health Association (APHA), American Water Works Association (AWWA), and Water Environment Federation (WEF), Standard

Methods for the Examination of Water and Wastewater, 24th Edition, 2022.

TABLE A7.3c Measurement Pe	erforma	•					nent (HHD)		
	ı	Co	nventional Pa	rameters	in Wate	er	T		ı	1
Parameter	Units	Matrix	Method	Parameter Code	TCEQ AWRL	TOO	LOQ Check Sample %Rec	Precision (RPD)	Bias %Rec. of LCS	Lab
RESIDUE, TOTAL NONFILTRABLE (MG/L)	mg/L	water	SM 2540D	00530	5	4	NA	NA	NA	HHD- BLS
NITROGEN, AMMONIA, TOTAL (MG/L AS N)	mg/L	water	SM 4500- NH3 H	00610	0.1	0.1	70-130	20	80-120	HHD- BLS
NITRITE NITROGEN, TOTAL (MG/L AS N)	mg/L	water	EPA 300.0 Rev. 2.1 (1993)	00615	0.05	0.05	70-130	20	80-120	HHD- BLS
NITRATE NITROGEN, TOTAL (MG/L AS N)	mg/L	water	EPA 300.0 Rev. 2.1 (1993)	00620	0.05	0.02	70-130	20	80-120	HHD- BLS
NITROGEN, KJELDAHL, TOTAL (MG/L AS N)	mg/L	water	EPA 351.2	00625	0.2	0.2	70-130	20	80-120	Eastex
PHOSPHORUS, TOTAL, WET METHOD (MG/L AS P)	mg/L	water	EPA 365.1	00665	0.06	0.02	70-130	20	80-120	HHD- BLS
CHLORIDE (MG/L AS CL)	mg/L	water	EPA 300.0 Rev. 2.1 (1993)	00940	5	5	70-130	20	80-120	HHD- BLS
SULFATE (MG/L AS SO4)	mg/L	water	EPA 300.0 Rev. 2.1 (1993)	00945	5	5	70-130	20	80-120	HHD- BLS

United States Environmental Protection Agency (USEPA) Methods for Chemical Analysis of Water and Wastes, Manual #EPA-600/4-79-020 U.S. Code of Federal Regulations (CFR). Title 40: Protection of Environment, Part 136

American Public Health Association (APHA), American Water Works Association (AWWA), and Water Environment Federation (WEF), Standard Methods for the Examination of Water and Wastewater, 24th Edition, 2022.

TCEQ SOP, V1 - TCEQ Surface Water Quality Monitoring Procedures, Volume 1: Physical and Chemical Monitoring Methods, 2012 (RG-415).

TABLE A7.3d Measurem	ent Perform	nance Sp	ecifications fo	r Houston	Health I	Departmo	ent (HHD)		
		Ва	cteriological f	Parameter	s in Wate	er				
Parameter	Units	Matrix	Method	Parameter Code	TCEQ AWRL	700	LOQ Check Sample %Rec	Log Difference of Duplicates	Bias %Rec. of LCS	Lab
E.COLI, COLILERT, IDEXX METHOD, MPN/100ML	MPN/100 mL	water	IDEXX Colilert 18	31699	1	1	NA	0.50*	NA	HHD- BLS
ENTEROCOCCI, ENTEROLERT, IDEXX, (MPN/100 ML)	MPN/100 mL	water	IDEXX Enterolert	31701	10***	10***	NA	0.50*	NA	HHD- BLS
E.COLI, COLILERT, IDEXX, HOLDING TIME	hours	water	NA	31704	NA	NA	NA	NA	NA	HHD- BLS

^{*} This value is not expressed as a relative percent difference. It represents the maximum allowable difference between the logarithm of the result of a sample and the logarithm of the duplicate result. See Section B5.

United States Environmental Protection Agency (USEPA) Methods for Chemical Analysis of Water and Wastes, Manual #EPA-600/4-79-020 U.S. Code of Federal Regulations (CFR). Title 40: Protection of Environment, Part 136

American Public Health Association (APHA), American Water Works Association (AWWA), and Water Environment Federation (WEF), Standard Methods for the Examination of Water and Wastewater, 24th Edition, 2022.

TCEQ SOP, V1 - TCEQ Surface Water Quality Monitoring Procedures, Volume 1: Physical and Chemical Monitoring Methods, 2012 (RG-415).

^{**} E. coli samples analyzed by these methods should always be processed as soon as possible and within 8 hours. When transport conditions necessitate delays in delivery longer than 6 hours, the holding time may be extended and samples must be processed as soon as possible and within 30 hours.

^{***}Enterococcus Samples should be diluted 1:10 for all waters.

TABLE A7.4a Measurement Performance Specifications for Houston Drinking Water Operations (DWO) Field Parameters										
Parameter*	Units Pield Parame	Matrix	Method	Parameter Code	Lab					
TEMPERATURE, WATER (DEGREES CENTIGRADE)	DEG C	water	SM 2550 B and TCEQ SOP V1	00010	Field					
TRANSPARENCY, SECCHI DISC (METERS)	meters	water	TCEQ SOP V1	00078	Field					
SPECIFIC CONDUCTANCE,FIELD (US/CM @ 25C)	us/cm	water	EPA 120.1 and TCEQ SOP, V1	00094	Field					
OXYGEN, DISSOLVED (MG/L)	mg/L	water	SM 4500-O G and TCEQ SOP V1	00300	Field					
PH (STANDARD UNITS)	s.u.	water	EPA 150.1 and TCEQ SOP V1	00400	Field					
DAYS SINCE PRECIPITATION EVENT (DAYS)	days	other	TCEQ SOP V1	72053	Field					
DEPTH OF BOTTOM OF WATER BODY AT SAMPLE SITE	meters	water	TCEQ SOP V2	82903	Field					
RESERVOIR STAGE (FEET ABOVE MEAN SEA LEVEL)***	FT ABOVE MSL	water	TWDB	00052	Field					
RESERVOIR PERCENT FULL***	% RESERVOIR CAPACITY	water	TWDB	00053	Field					
RESERVOIR ACCESS NOT POSSIBLE LEVEL TOO LOW ENTER 1 IF REPORTING	NS	other	TCEQ Drought Guidance	00051	Field					
MAXIMUM POOL WIDTH AT TIME OF STUDY (METERS)**	meters	other	TCEQ SOP V2	89864	Field					
MAXIMUM POOL DEPTH AT TIME OF STUDY(METERS)**	meters	other	TCEQ SOP V2	89865	Field					
POOL LENGTH, METERS**	meters	other	TCEQ SOP V2	89869	Field					
% POOL COVERAGE IN 500 METER REACH**	%	other	TCEQ SOP V2	89870	Field					
WIND INTENSITY (1=CALM,2=SLIGHT,3=MOD.,4=STRONG)	NU	other	NA	89965	Field					
PRESENT WEATHER (1=CLEAR,2=PTCLDY,3=CLDY,4=RAIN,5=OTHER)	NU	other	NA	89966	Field					
WATER SURFACE(1=CALM,2=RIPPLE,3=WAVE,4=WHITECAP)	NU	water	NA	89968	Field					
WATER ODOR (1=SEWAGE, 2=OILY/CHEMICAL, 3=ROTTEN EGGS, 4=MUSKY, 5=FISHY, 6=NONE, 7=OTHER (WRITE IN COMMENTS))	NU	water	NA	89971	Field					
WATER COLOR 1=BRWN 2=RED 3=GRN 4=BLCK 5=CLR 6=OT	NU	water	NA	89969	Field					
TURBIDITY, OBSERVED (1=LOW, 2=MEDIUM, 3=HIGH)	NU	water	NA	88842	Field					

^{*} Reporting to be consistent with SWQM guidance and based on measurement capability.

United States Environmental Protection Agency (USEPA) Methods for Chemical Analysis of Water and Wastes, Manual #EPA-600/4-79-020

U.S. Code of Federal Regulations (CFR). Title 40: Protection of Environment, Part 136

American Public Health Association (APHA), American Water Works Association (AWWA), and Water Environment Federation (WEF), Standard Methods for the Examination of Water and Wastewater, 24th Edition, 2022.

TCEQ SOP, V1 - TCEQ Surface Water Quality Monitoring Procedures, Volume 1: Physical and Chemical Monitoring Methods, 2012 (RG-415).

^{**} To be routinely reported when collecting data from perennial pools.

^{***} As published by the Texas Water Development Board on their website https://www.waterdatafortexas.org/reservoirs/statewide

TABLE A7.4b Measurement Performance Specifications for	Housto	n Drinking	Water Operation	s (DWO)	
Flow Para	meters				
Parameter	Units	Matrix	Method	Parameter Code	Lab
FLOW STREAM, INSTANTANEOUS (CUBIC FEET PER SEC)	cfs	water	TCEQ SOP V1	00061	Field
FLOW SEVERITY:1=No Flow,2=Low,3=Normal,4=Flood,5=High,6=Dry	NU	water	TCEQ SOP V1	01351	Field
FLOW MTH 1=GAGE 2=ELEC 3=MECH 4=WEIR/FLU 5=DOPPLER	NU	other	TCEQ SOP V1	89835	Field

United States Environmental Protection Agency (USEPA) Methods for Chemical Analysis of Water and Wastes, Manual #EPA-600/4-79-020 U.S. Code of Federal Regulations (CFR). Title 40: Protection of Environment, Part 136

American Public Health Association (APHA), American Water Works Association (AWWA), and Water Environment Federation (WEF), Standard Methods for the Examination of Water and Wastewater, 24th Edition, 2022.

TABLE A7.4c Measurement Pe	rformar	rce Speci	fications for H	louston D	rinking	Water	Operation	ons (D	WO)	
	1	Conve	ntional Param		Vater			ı	•	r
Parameter	Units	Matrix	Method	Parameter Code	TCEQ AWRL	ГОО	LOQ Check Sample %Rec	Precision (RPD)	Bias %Rec. of LCS	Lab
ALKALINITY, TOTAL (MG/L AS CACO3)	mg/L	water	SM 2320B	00410	20	20	NA	20	NA	DWO
RESIDUE, TOTAL NONFILTRABLE (MG/L)	mg/L	water	SM 2540D	00530	5	4	NA	NA	NA	DWO
NITROGEN, AMMONIA, TOTAL (MG/L AS N)	mg/L	water	EPA 350.3	00610	0.1	0.1	70- 130	20	80- 120	DWO
NITRITE NITROGEN, TOTAL (MG/L AS N)	mg/L	water	EPA 300.0 Rev. 2.1 (1993)	00615	0.05	0.04	70- 130	20	80- 120	DWO
NITRATE NITROGEN, TOTAL (MG/L AS N)	mg/L	water	EPA 300.0 Rev. 2.1 (1993)	00620	0.05	0.04	70- 130	20	80- 120	DWO
NITROGEN, KJELDAHL, TOTAL (MG/L AS N)	mg/L	water	EPA 351.2	00625	0.2	0.2	70- 130	20	80- 120	Eastex
PHOSPHORUS, TOTAL, WET METHOD (MG/L AS P)	mg/L	water	EPA 365.3	00665	0.06	0.02	70- 130	20	80- 120	DWO
CHLORIDE (MG/L AS CL)	mg/L	water	EPA 300.0 Rev. 2.1 (1993)	00940	5	5	70- 130	20	80- 120	DWO
SULFATE (MG/L AS SO4)	mg/L	water	EPA 300.0 Rev. 2.1 (1993)	00945	5	5	70- 130	20	80- 120	DWO
CHLOROPHYLL-A UG/L SPECTROPHOTOMETRIC ACID. METH	ug/L	water	EPA 446.0	32211	3	3	NA	20	80- 120	Eastex

United States Environmental Protection Agency (USEPA) Methods for Chemical Analysis of Water and Wastes, Manual #EPA-600/4-79-020 U.S. Code of Federal Regulations (CFR). Title 40: Protection of Environment, Part 136

American Public Health Association (APHA), American Water Works Association (AWWA), and Water Environment Federation (WEF), Standard Methods for the Examination of Water and Wastewater, 24th Edition, 2022.

TABLE A7.4d Measuremen	nt Performance S	Specificat	ions for Hou	uston Dri	nking W	ater Op	erations	(DWO)		
		Bacterio	logical Para	meters in	Water					
Parameter	Units	Matrix	Method	Parameter Code	TCEQ AWRL	T00	LOQ Check Sample %Rec	Log Difference of Duplicates	Bias %Rec. of LCS	Lab
E.COLI, COLILERT, IDEXX METHOD, MPN/100ML	MPN/100 mL	water	SM 9223- B**	31699	1	1	NA	0.50*	NA	DWO
E.COLI, COLILERT, IDEXX, HOLDING TIME	hours	water	NA	31704	NA	NA	NA	NA	NA	DWO

^{*} This value is not expressed as a relative percent difference. It represents the maximum allowable difference between the logarithm of the result of a sample and the logarithm of the duplicate result. See Section B5.

United States Environmental Protection Agency (USEPA) Methods for Chemical Analysis of Water and Wastes, Manual #EPA-600/4-79-020 U.S. Code of Federal Regulations (CFR). Title 40: Protection of Environment, Part 136

American Public Health Association (APHA), American Water Works Association (AWWA), and Water Environment Federation (WEF), Standard Methods for the Examination of Water and Wastewater, 24th Edition, 2022.

TCEQ SOP, V1 - TCEQ Surface Water Quality Monitoring Procedures, Volume 1: Physical and Chemical Monitoring Methods, 2012 (RG-415).

^{**} E. coli samples analyzed by these methods should always be processed as soon as possible and within 8 hours. When transport conditions necessitate delays in delivery longer than 6 hours, the holding time may be extended and samples must be processed as soon as possible and within 30 hours.

TABLE A7.5a Measurement Performance Specifications 1		iver Autho	ority - Lake Conroe	(SJRA-LC)	
Field	Parameters	Γ		Γ	
Parameter*	Units	Matrix	Method	Parameter Code	Lab
TEMPERATURE, WATER (DEGREES CENTIGRADE)	DEG C	water	SM 2550 B and TCEQ SOP V1	00010	Field
TRANSPARENCY, SECCHI DISC (METERS)	meters	water	TCEQ SOP V1	00078	Field
SPECIFIC CONDUCTANCE, FIELD (US/CM @ 25C)	us/cm	water	EPA 120.1 and TCEQ SOP, V1	00094	Field
OXYGEN, DISSOLVED (MG/L)	mg/L	water	SM 4500-O G and TCEQ SOP V1	00300	Field
PH (STANDARD UNITS)	s.u.	water	EPA 150.1 and TCEQ SOP V1	00400	Field
DAYS SINCE PRECIPITATION EVENT (DAYS)	days	other	TCEQ SOP V1	72053	Field
DEPTH OF BOTTOM OF WATER BODY AT SAMPLE SITE	meters	water	TCEQ SOP V2	82903	Field
RESERVOIR STAGE (FEET ABOVE MEAN SEA LEVEL)***	FT ABOVE MSL	water	TWDB	00052	Field
RESERVOIR PERCENT FULL***	% RESERVOIR CAPACITY	water	TWDB	00053	Field
RESERVOIR ACCESS NOT POSSIBLE LEVEL TOO LOW ENTER 1 IF REPORTING	NS	other	TCEQ Drought Guidance	00051	Field
WIND INTENSITY (1=CALM,2=SLIGHT,3=MOD.,4=STRONG)	NU	other	NA	89965	Field
PRESENT WEATHER (1=CLEAR,2=PTCLDY,3=CLDY,4=RAIN,5=OTHER)	NU	other	NA	89966	Field
WATER SURFACE(1=CALM,2=RIPPLE,3=WAVE,4=WHITECAP)	NU	water	NA	89968	Field
WATER ODOR (1=SEWAGE, 2=OILY/CHEMICAL, 3=ROTTEN EGGS, 4=MUSKY, 5=FISHY, 6=NONE, 7=OTHER (WRITE IN COMMENTS))	NU	water	NA	89971	Field
WATER COLOR 1=BRWN 2=RED 3=GRN 4=BLCK 5=CLR 6=OT	NU	water	NA	89969	Field

^{*} Reporting to be consistent with SWQM guidance and based on measurement capability.

United States Environmental Protection Agency (USEPA) Methods for Chemical Analysis of Water and Wastes, Manual #EPA-600/4-79-020 U.S. Code of Federal Regulations (CFR). Title 40: Protection of Environment, Part 136

American Public Health Association (APHA), American Water Works Association (AWWA), and Water Environment Federation (WEF), Standard Methods for the Examination of Water and Wastewater, 24th Edition, 2022.

TCEQ SOP, V1 - TCEQ Surface Water Quality Monitoring Procedures, Volume 1: Physical and Chemical Monitoring Methods, 2012 (RG-415).

^{***} As published by the Texas Water Development Board on their website https://www.waterdatafortexas.org/reservoirs/statewide

TABLE A7.5b Measurement Pe	erforma	•				Authori	ty - Lake	Conro	e (SJRA-LC)	
	T	Conv	entional Parar		Water		Ι	_		ı
Parameter	Units	Matrix	Method	Parameter Code	TCEQ AWRL	рол	LOQ Check Sample %Rec	Precision (RPD)	Bias %Rec. of LCS	Гар
ALKALINITY, TOTAL (MG/L AS CACO3)	mg/L	water	SM 2320B	00410	20	20	NA	20	NA	DWO
RESIDUE, TOTAL NONFILTRABLE (MG/L)	mg/L	water	SM 2540D	00530	5	4	NA	NA	NA	DWO
NITROGEN, AMMONIA, TOTAL (MG/L AS N)	mg/L	water	EPA 350.3	00610	0.1	0.1	70- 130	20	80-120	DWO
NITRITE NITROGEN, TOTAL (MG/L AS N)	mg/L	water	EPA 300.0 Rev. 2.1 (1993)	00615	0.05	0.04	70- 130	20	80-120	DWO
NITRATE NITROGEN, TOTAL (MG/L AS N)	mg/L	water	EPA 300.0 Rev. 2.1 (1993)	00620	0.05	0.04	70- 130	20	80-120	DWO
NITROGEN, KJELDAHL, TOTAL (MG/L AS N)	mg/L	water	EPA 351.2	00625	0.2	0.2	70- 130	20	80-120	Eastex
PHOSPHORUS, TOTAL, WET METHOD (MG/L AS P)	mg/L	water	EPA 365.3	00665	0.06	0.02	70- 130	20	80-120	DWO
CHLORIDE (MG/L AS CL)	mg/L	water	EPA 300.0 Rev. 2.1 (1993)	00940	5	5	70- 130	20	80-120	DWO
SULFATE (MG/L AS SO4)	mg/L	water	EPA 300.0 Rev. 2.1 (1993)	00945	5	5	70- 130	20	80-120	DWO
CHLOROPHYLL-A UG/L SPECTROPHOTOMETRIC ACID. METH	ug/L	water	EPA 446.0	32211	3	3	NA	20	80-120	Eastex

United States Environmental Protection Agency (USEPA) Methods for Chemical Analysis of Water and Wastes, Manual #EPA-600/4-79-020 U.S. Code of Federal Regulations (CFR). Title 40: Protection of Environment, Part 136

American Public Health Association (APHA), American Water Works Association (AWWA), and Water Environment Federation (WEF), Standard Methods for the Examination of Water and Wastewater, 24th Edition, 2022.

TABLE A7.5c Measurement Perfe	ormance Spe	cificatio	ns for San Jacir	nto River	Authori	ity - La	ke Conro	e (SJRA-	LC)		
	Bacteriological Parameters in Water										
Parameter	Units	Matrix	Method	Parameter Code	TCEQ AWRL	T00	LOQ Check Sample %Rec	Log Difference of Duplicates	Bias %Rec. of LCS	Lab	
E.COLI, COLILERT, IDEXX METHOD, MPN/100ML	MPN/100 mL	water	SM 9223- B**	31699	1	1	NA	0.50*	NA	DWO	
E.COLI, COLILERT, IDEXX, HOLDING TIME	hours	water	NA	31704	NA	NA	NA	NA	NA	DWO	

^{*} This value is not expressed as a relative percent difference. It represents the maximum allowable difference between the logarithm of the result of a sample and the logarithm of the duplicate result. See Section B5.

United States Environmental Protection Agency (USEPA) Methods for Chemical Analysis of Water and Wastes, Manual #EPA-600/4-79-020 U.S. Code of Federal Regulations (CFR). Title 40: Protection of Environment, Part 136

American Public Health Association (APHA), American Water Works Association (AWWA), and Water Environment Federation (WEF), Standard Methods for the Examination of Water and Wastewater, 24th Edition, 2022.

TCEQ SOP, V1 - TCEQ Surface Water Quality Monitoring Procedures, Volume 1: Physical and Chemical Monitoring Methods, 2012 (RG-415).

^{**} *E. coli* samples analyzed by these methods should always be processed as soon as possible and within 8 hours. When transport conditions necessitate delays in delivery longer than 6 hours, the holding time may be extended and samples must be processed as soon as possible and within 30 hours.

TABLE A7.6a Measurement Performance Specifications for San Jacinto River Authority - Woodlands (SJRA-W)											
	Field Paramete	ers	_		T						
Parameter*	Units	Matrix	Method	Parameter Code	Lab						
TEMPERATURE, WATER (DEGREES CENTIGRADE)	DEG C	water	SM 2550 B and TCEQ SOP V1	00010	Field						
TRANSPARENCY, SECCHI DISC (METERS)	meters	water	TCEQ SOP V1	00078	Field						
SPECIFIC CONDUCTANCE, FIELD (US/CM @ 25C)	us/cm	water	EPA 120.1 and TCEQ SOP, V1	00094	Field						
OXYGEN, DISSOLVED (MG/L)	mg/L	water	SM 4500-0 G and TCEQ SOP V1	00300	Field						
PH (STANDARD UNITS)	s.u.	water	EPA 150.1 and TCEQ SOP V1	00400	Field						
DAYS SINCE PRECIPITATION EVENT (DAYS)	days	other	TCEQ SOP V1	72053	Field						
DEPTH OF BOTTOM OF WATER BODY AT SAMPLE SITE	meters	water	TCEQ SOP V2	82903	Field						
RESERVOIR STAGE (FEET ABOVE MEAN SEA LEVEL)***	FT ABOVE MSL	water	TWDB	00052	Field						
RESERVOIR PERCENT FULL***	% RESERVOIR CAPACITY	water	TWDB	00053	Field						
RESERVOIR ACCESS NOT POSSIBLE LEVEL TOO LOW ENTER 1 IF REPORTING	NS	other	TCEQ Drought Guidance	00051	Field						
WIND INTENSITY (1=CALM,2=SLIGHT,3=MOD.,4=STRONG)	NU	other	NA	89965	Field						
PRESENT WEATHER (1=CLEAR,2=PTCLDY,3=CLDY,4=RAIN,5=OTHER)	NU	other	NA	89966	Field						
WATER SURFACE(1=CALM,2=RIPPLE,3=WAVE,4=WHITECAP)	NU	water	NA	89968	Field						
WATER ODOR (1=SEWAGE, 2=OILY/CHEMICAL, 3=ROTTEN EGGS, 4=MUSKY, 5=FISHY, 6=NONE, 7=OTHER (WRITE IN COMMENTS))	NU	water	NA	89971	Field						
WATER COLOR 1=BRWN 2=RED 3=GRN 4=BLCK 5=CLR 6=OT	NU	water	NA	89969	Field						

^{*} Reporting to be consistent with SWQM guidance and based on measurement capability.

United States Environmental Protection Agency (USEPA) Methods for Chemical Analysis of Water and Wastes, Manual #EPA-600/4-79-020 U.S. Code of Federal Regulations (CFR). Title 40: Protection of Environment, Part 136

American Public Health Association (APHA), American Water Works Association (AWWA), and Water Environment Federation (WEF), Standard Methods for the Examination of Water and Wastewater, 24th Edition, 2022.

^{***} As published by the Texas Water Development Board on their website https://www.waterdatafortexas.org/reservoirs/statewide

TABLE A7.6b Measurement Performance Specifications for San Jacinto River Authority - Woodlands (SJRA-W)											
Flow Parameters											
Parameter	Units	Matrix	Method	Parameter Code	qeŢ						
FLOW STREAM, INSTANTANEOUS (CUBIC FEET PER SEC)	cfs	water	TCEQ SOP V1	00061	Field						
FLOW SEVERITY:1=No Flow,2=Low,3=Normal,4=Flood,5=High,6=Dry	NU	water	TCEQ SOP V1	01351	Field						
FLOW MTH 1=GAGE 2=ELEC 3=MECH 4=WEIR/FLU 5=DOPPLER	NU	other	TCEQ SOP V1	89835	Field						

United States Environmental Protection Agency (USEPA) Methods for Chemical Analysis of Water and Wastes, Manual #EPA-600/4-79-020 U.S. Code of Federal Regulations (CFR). Title 40: Protection of Environment, Part 136

American Public Health Association (APHA), American Water Works Association (AWWA), and Water Environment Federation (WEF), Standard

Methods for the Examination of Water and Wastewater, 24th Edition, 2022.

TABLE A7.6c Measurement Per	TABLE A7.6c Measurement Performance Specifications for San Jacinto River Authority - Woodlands (SJRA-W)												
		Conve	entional Param	eters in W	/ater								
Parameter	Units	Matrix	Method	Parameter Code	TCEQ AWRL	700	LOQ Check Sample %Rec	Precision (RPD)	Bias %Rec. of LCS	Lab			
RESIDUE, TOTAL NONFILTRABLE (MG/L)	mg/L	water	SM 2540D	00530	5	1	NA	NA	NA	Eastex			
NITROGEN, AMMONIA, TOTAL (MG/L AS N)	mg/L	water	SM 4500 NH3 G	00610	0.1	0.1	70- 130	20	80- 120	Eastex			
NITRITE NITROGEN, TOTAL (MG/L AS N)	mg/L	water	EPA 300.0 Rev. 2.1 (1993)	00615	0.05	0.05	70- 130	20	80- 120	Eastex			
NITRATE NITROGEN, TOTAL (MG/L AS N)	mg/L	water	EPA 300.0 Rev. 2.1 (1993)	00620	0.05	0.05	70- 130	20	80- 120	Eastex			
NITROGEN, KJELDAHL, TOTAL (MG/L AS N)	mg/L	water	EPA 351.2	00625	0.2	0.2	70- 130	20	80- 120	Eastex			
NITRITE PLUS NITRATE, TOTAL ONE LAB DETERMINED VALUE (MG/L AS N)	mg/L	water	SM 4500 NO3 F	00630	0.05	0.02	70- 130	20	80- 120	Eastex			
PHOSPHORUS, TOTAL, WET METHOD (MG/L AS P)	mg/L	water	EPA 200.7	00665	0.06	0.06	70- 130	20	80- 120	Eastex			
CHLORIDE (MG/L AS CL)	mg/L	water	EPA 300.0 Rev. 2.1 (1993)	00940	5	5	70- 130	20	80- 120	Eastex			
SULFATE (MG/L AS SO4)	mg/L	water	EPA 300.0 Rev. 2.1 (1993)	00945	5	4	70- 130	20	80- 120	Eastex			
CHLOROPHYLL-A UG/L SPECTROPHOTOMETRIC ACID. METH	ug/L	water	EPA 446.0	32211	3	3	NA	20	80- 120	Eastex			

United States Environmental Protection Agency (USEPA) Methods for Chemical Analysis of Water and Wastes, Manual #EPA-600/4-79-020 U.S. Code of Federal Regulations (CFR). Title 40: Protection of Environment, Part 136

American Public Health Association (APHA), American Water Works Association (AWWA), and Water Environment Federation (WEF), Standard Methods for the Examination of Water and Wastewater, 24th Edition, 2022.

TABLE A7.6d Measureme	TABLE A7.6d Measurement Performance Specifications for San Jacinto River Authority - Woodlands (SJRA-W)											
Bacteriological Parameters in Water												
Parameter	Units	Matrix	Method	Parameter Code	TCEQ AWRL	100	LOQ Check Sample %Rec	Log Difference of Duplicates	Bias %Rec. of LCS	Lab		
E.COLI, COLILERT, IDEXX METHOD, MPN/100ML	MPN/100 mL	water	IDEXX Colilert or Colilert 18**	31699	1	1	NA	0.50*	NA	Eastex		
E.COLI, COLILERT, IDEXX, HOLDING TIME	hours	water	NA	31704	NA	NA	NA	NA	NA	Eastex		

^{*} This value is not expressed as a relative percent difference. It represents the maximum allowable difference between the logarithm of the result of a sample and the logarithm of the duplicate result. See Section B5.

United States Environmental Protection Agency (USEPA) Methods for Chemical Analysis of Water and Wastes, Manual #EPA-600/4-79-020 U.S. Code of Federal Regulations (CFR). Title 40: Protection of Environment, Part 136

American Public Health Association (APHA), American Water Works Association (AWWA), and Water Environment Federation (WEF), Standard Methods for the Examination of Water and Wastewater, 24th Edition, 2022.

^{**} E. coli samples analyzed by these methods should always be processed as soon as possible and within 8 hours. When transport conditions necessitate delays in delivery longer than 6 hours, the holding time may be extended and samples must be processed as soon as possible and within 30 hours.

TABLE A7.7a Measurement Performance Specifications for Environmental Institute of Houston (EIH)											
	Field Paran	neters	T		T						
Parameter*	Units	Matrix	Method	Parameter Code	Lab						
TEMPERATURE, WATER (DEGREES CENTIGRADE)	DEG C	water	SM 2550 B and TCEQ SOP V1	00010	Field						
TRANSPARENCY, SECCHI DISC (METERS)	meters	water	TCEQ SOP V1	00078	Field						
SPECIFIC CONDUCTANCE,FIELD (US/CM @ 25C)	us/cm	water	EPA 120.1 and TCEQ SOP, V1	00094	Field						
OXYGEN, DISSOLVED (MG/L)	mg/L	water	SM 4500-O G and TCEQ SOP V1	00300	Field						
PH (STANDARD UNITS)	s.u.	water	EPA 150.1 and TCEQ SOP V1	00400	Field						
SALINITY - PARTS PER THOUSAND	PPT	water	SM 2520 and TCEQ SOP V1	00480	Field						
DAYS SINCE PRECIPITATION EVENT (DAYS)	days	other	TCEQ SOP V1	72053	Field						
DEPTH OF BOTTOM OF WATER BODY AT SAMPLE SITE	meters	water	TCEQ SOP V2	82903	Field						
MAXIMUM POOL WIDTH AT TIME OF STUDY (METERS)**	meters	other	TCEQ SOP V2	89864	Field						
MAXIMUM POOL DEPTH AT TIME OF STUDY(METERS)**	meters	other	TCEQ SOP V2	89865	Field						
POOL LENGTH, METERS**	meters	other	TCEQ SOP V2	89869	Field						
% POOL COVERAGE IN 500 METER REACH**	%	other	TCEQ SOP V2	89870	Field						
WIND INTENSITY (1=CALM,2=SLIGHT,3=MOD.,4=STRONG)	NU	other	NA	89965	Field						
PRESENT WEATHER (1=CLEAR,2=PTCLDY,3=CLDY,4=RAIN,5=OTHER)	NU	other	NA	89966	Field						
WATER SURFACE(1=CALM,2=RIPPLE,3=WAVE,4=WHITECAP)	NU	water	NA	89968	Field						
TIDE STAGE 1=LOW,2=FALLING,3=SLACK,4=RISING,5=HI	NU	water	NA	89972	Field						
WATER ODOR (1=SEWAGE, 2=OILY/CHEMICAL, 3=ROTTEN EGGS, 4=MUSKY, 5=FISHY, 6=NONE, 7=OTHER (WRITE IN COMMENTS))	NU	water	NA	89971	Field						
WATER COLOR 1=BRWN 2=RED 3=GRN 4=BLCK 5=CLR 6=OT	NU	water	NA	89969	Field						

^{*} Reporting to be consistent with SWQM guidance and based on measurement capability.

United States Environmental Protection Agency (USEPA) Methods for Chemical Analysis of Water and Wastes, Manual #EPA-600/4-79-020 U.S. Code of Federal Regulations (CFR). Title 40: Protection of Environment, Part 136

American Public Health Association (APHA), American Water Works Association (AWWA), and Water Environment Federation (WEF), Standard Methods for the Examination of Water and Wastewater, 24th Edition, 2022.

TCEQ SOP, V1 - TCEQ Surface Water Quality Monitoring Procedures, Volume 1: Physical and Chemical Monitoring Methods, 2012 (RG-415).

^{**} To be routinely reported when collecting data from perennial pools.

Flow Parameters											
Parameter	Units	Matrix	Method	Parameter Code	Lab						
FLOW STREAM, INSTANTANEOUS (CUBIC FEET PER SEC)	cfs	water	TCEQ SOP V1	00061	Field						
FLOW SEVERITY:1=No Flow,2=Low,3=Normal,4=Flood,5=High,6=Dry	NU	water	TCEQ SOP V1	01351	Field						
STREAM FLOW ESTIMATE (CFS)	cfs	water	TCEQ SOP V1	74069	Field						
FLOW MTH 1=GAGE 2=ELEC 3=MECH 4=WEIR/FLU 5=DOPPLER	NU	other	TCEQ SOP V1	89835	Field						

United States Environmental Protection Agency (USEPA) Methods for Chemical Analysis of Water and Wastes, Manual #EPA-600/4-79-020 U.S. Code of Federal Regulations (CFR). Title 40: Protection of Environment, Part 136

American Public Health Association (APHA), American Water Works Association (AWWA), and Water Environment Federation (WEF), Standard Methods for the Examination of Water and Wastewater, 24th Edition, 2022.

TCEQ SOP, V1 - TCEQ Surface Water Quality Monitoring Procedures, Volume 1: Physical and Chemical Monitoring Methods, 2012 (RG-415).

TABLE A7.7c Measurement Performance Specifications for Environmental Institute of Houston (EIH)													
Conventional Parameters in Water													
Parameter	Units	Matrix	Method	Parameter Code	TCEQ AWRL	700	LOQ Check Sample %Rec	Precision (RPD)	Bias %Rec. of LCS	Гар			
RESIDUE, TOTAL NONFILTRABLE (MG/L)	mg/L	water	SM 2540D	00530	5	1	NA	NA	NA	Eastex			
NITROGEN, AMMONIA, TOTAL (MG/L AS N)	mg/L	water	SM 4500 NH3 G	00610	0.1	0.1	70- 130	20	80- 120	Eastex			
NITRITE NITROGEN, TOTAL (MG/L AS N)	mg/L	water	EPA 300.0 Rev. 2.1 (1993)	00615	0.05	0.05	70- 130	20	80- 120	Eastex			
NITRATE NITROGEN, TOTAL (MG/L AS N)	mg/L	water	EPA 300.0 Rev. 2.1 (1993)	00620	0.05	0.05	70- 130	20	80- 120	Eastex			
NITROGEN, KJELDAHL, TOTAL (MG/L AS N)	mg/L	water	EPA 351.2	00625	0.2	0.2	70- 130	20	80- 120	Eastex			
NITRITE PLUS NITRATE, TOTAL ONE LAB DETERMINED VALUE (MG/L AS N)	mg/L	water	SM 4500- NO3 F	00630	0.05	0.02	70- 130	20	80- 120	Eastex			
PHOSPHORUS, TOTAL, WET METHOD (MG/L AS P)	mg/L	water	EPA 200.7	00665	0.06	0.06	70- 130	20	80- 120	Eastex			
CHLORIDE (MG/L AS CL)	mg/L	water	EPA 300.0 Rev. 2.1 (1993)	00940	5	5	70- 130	20	80- 120	Eastex			
SULFATE (MG/L AS SO4)	mg/L	water	EPA 300.0 Rev. 2.1 (1993)	00945	5	4	70- 130	20	80- 120	Eastex			
CHLOROPHYLL-A UG/L SPECTROPHOTOMETRIC ACID. METH	ug/L	water	EPA 446.0	32211	3	3	NA	20	80- 120	Eastex			

United States Environmental Protection Agency (USEPA) Methods for Chemical Analysis of Water and Wastes, Manual #EPA-600/4-79-020 U.S. Code of Federal Regulations (CFR). Title 40: Protection of Environment, Part 136

American Public Health Association (APHA), American Water Works Association (AWWA), and Water Environment Federation (WEF), Standard Methods for the Examination of Water and Wastewater, 24th Edition, 2022.

TCEQ SOP, V1 - TCEQ Surface Water Quality Monitoring Procedures, Volume 1: Physical and Chemical Monitoring Methods, 2012 (RG-415).

TABLE A7.7d Measurer	TABLE A7.7d Measurement Performance Specifications for Environmental Institute of Houston (EIH)											
Bacteriological Parameters in Water												
Parameter	Units	Matrix	Method	Parameter Code	TCEQ AWRL	700	LOQ Check Sample %Rec	Log Difference of Duplicates	Bias %Rec. of LCS	Lab		
E.COLI, COLILERT, IDEXX METHOD, MPN/100ML	MPN/100 mL	water	IDEXX Colilert or Colilert 18**	31699	1	1	NA	0.50*	NA	Eastex		
ENTEROCOCCI, ENTEROLERT, IDEXX, (MPN/100 ML)	MPN/100 mL	water	IDEXX Enterolert	31701	10***	10***	NA	0.50*	NA	Eastex		
E.COLI, COLILERT, IDEXX, HOLDING TIME	hours	water	NA	31704	NA	NA	NA	NA	NA	Eastex		

^{*} This value is not expressed as a relative percent difference. It represents the maximum allowable difference between the logarithm of the result of a sample and the logarithm of the duplicate result. See Section B5.

United States Environmental Protection Agency (USEPA) Methods for Chemical Analysis of Water and Wastes, Manual #EPA-600/4-79-020 U.S. Code of Federal Regulations (CFR). Title 40: Protection of Environment, Part 136

American Public Health Association (APHA), American Water Works Association (AWWA), and Water Environment Federation (WEF), Standard Methods for the Examination of Water and Wastewater, 24th Edition, 2022.

^{**} E. coli samples analyzed by these methods should always be processed as soon as possible and within 8 hours. When transport conditions necessitate delays in delivery longer than 6 hours, the holding time may be extended and samples must be processed as soon as possible and within 30 hours.

^{***}Enterococcus samples should be diluted 1:10 for all waters.

TABLE A7.7e Measurement Performance Specifications for Environmental Institute of Houston (EIH)										
24 Hour Parame	ters in Water	•								
Parameter*	Units	Matrix	Method	Parameter Code	Lab					
TEMPERATURE, WATER (DEGREES CENTIGRADE), 24HR AVG	DEG C	Water	TCEQ SOP V1	00209	field					
WATER TEMPERATURE, DEGREES CENTIGRADE, 24HR MAX	DEG C	Water	TCEQ SOP V1	00210	field					
TEMPERATURE, WATER (DEGREES CENTIGRADE) 24HR MIN	DEG C	Water	TCEQ SOP V1	00211	field					
SPECIFIC CONDUCTANCE, US/CM, FIELD, 24HR AVG	uS/cm	Water	TCEQ SOP V1	00212	field					
SPECIFIC CONDUCTANCE, US/CM, FIELD, 24HR MAX	uS/cm	Water	TCEQ SOP V1	00213	field					
SPECIFIC CONDUCTANCE, US/CM, FIELD, 24HR MIN	uS/cm	Water	TCEQ SOP V1	00214	field					
PH, S.U., 24HR MAXIMUM VALUE	std. units	Water	TCEQ SOP V1	00215	field					
PH, S.U., 24HR, MINIMUM VALUE	std. units	Water	TCEQ SOP V1	00216	field					
SALINITY, 24-HR, MAXIMUM, PPT	ppt	Water	TCEQ SOP V1	00217	field					
SALINITY, 24-HR, AVERAGE, PPT	ppt	Water	TCEQ SOP V1	00218	field					
SALINITY, 24-HR, MINIMUM, PPT	ppt	Water	TCEQ SOP V1	00219	field					
SALINITY, # OF MEASUREMENTS IN 24-HRS	NU	Water	TCEQ SOP V1	00220	field					
WATER TEMPERATURE, # OF MEASUREMENTS IN 24-HRS	NU	Water	TCEQ SOP V1	00221	field					
SPECIFIC CONDUCTANCE, # OF MEASUREMENTS IN 24-HRS	NU	Water	TCEQ SOP V1	00222	field					
pH, # OF MEASUREMENTS IN 24-HRS	NU	Water	TCEQ SOP V1	00223	field					
DISSOLVED OXYGEN, 24-HOUR MIN. (MG/L) MIN. 4 MEA	mg/l	Water	TCEQ SOP V1	89855	field					
DISSOLVED OXYGEN, 24-HOUR MAX. (MG/L) MIN. 4 MEA	mg/l	Water	TCEQ SOP V1	89856	field					
DISSOLVED OXYGEN, 24-HOUR AVG. (MG/L) MIN. 4 MEA	mg/l	Water	TCEQ SOP V1	89857	field					
DISSOLVED OXYGEN, # OF MEASUREMENTS IN 24-HRS	NU	Water	TCEQ SOP V1	89858	field					

United States Environmental Protection Agency (USEPA) Methods for Chemical Analysis of Water and Wastes, Manual #EPA-600/4-79-020 U.S. Code of Federal Regulations (CFR). Title 40: Protection of Environment, Part 136

American Public Health Association (APHA), American Water Works Association (AWWA), and Water Environment Federation (WEF), Standard Methods for the Examination of Water and Wastewater, 24th Edition, 2022.

TABLE A7.8a Measurement Performance Specifications for	Texas Resear	ch Institu	ute for Environment	al Studies (T	RIES)
Field Pa	rameters	1	I		T
Parameter*	Units	Matrix	Method	Parameter Code	Lab
TEMPERATURE, WATER (DEGREES CENTIGRADE)	DEG C	water	SM 2550 B and TCEQ SOP V1	00010	Field
TRANSPARENCY, SECCHI DISC (METERS)	meters	water	TCEQ SOP V1	00078	Field
SPECIFIC CONDUCTANCE, FIELD (US/CM @ 25C)	us/cm	water	EPA 120.1 and TCEQ SOP, V1	00094	Field
OXYGEN, DISSOLVED (MG/L)	mg/L	water	SM 4500-O G and TCEQ SOP V1	00300	Field
PH (STANDARD UNITS)	s.u.	water	EPA 150.1 and TCEQ SOP V1	00400	Field
DAYS SINCE PRECIPITATION EVENT (DAYS)	days	other	TCEQ SOP V1	72053	Field
DEPTH OF BOTTOM OF WATER BODY AT SAMPLE SITE	meters	water	TCEQ SOP V2	82903	Field
MAXIMUM POOL WIDTH AT TIME OF STUDY (METERS)**	meters	other	TCEQ SOP V2	89864	Field
MAXIMUM POOL DEPTH AT TIME OF STUDY(METERS)**	meters	other	TCEQ SOP V2	89865	Field
POOL LENGTH, METERS**	meters	other	TCEQ SOP V2	89869	Field
% POOL COVERAGE IN 500 METER REACH**	%	other	TCEQ SOP V2	89870	Field
WIND INTENSITY (1=CALM,2=SLIGHT,3=MOD.,4=STRONG)	NU	other	NA	89965	Field
PRESENT WEATHER (1=CLEAR,2=PTCLDY,3=CLDY,4=RAIN,5=OTHER)	NU	other	NA	89966	Field
WATER SURFACE(1=CALM,2=RIPPLE,3=WAVE,4=WHITECAP)	NU	water	NA	89968	Field
WATER ODOR (1=SEWAGE, 2=OILY/CHEMICAL, 3=ROTTEN EGGS, 4=MUSKY, 5=FISHY, 6=NONE, 7=OTHER (WRITE IN COMMENTS))	NU	water	NA	89971	Field
WATER COLOR 1=BRWN 2=RED 3=GRN 4=BLCK 5=CLR 6=OT	NU	water	NA	89969	Field
WATER CLARITY (1=EXCELLENT, 2=GOOD, 3=FAIR, 4=POOR)	NU	water	NA	20424	Field
TURBIDITY, OBSERVED (1=LOW, 2=MEDIUM, 3=HIGH)	NU	water	NA	88842	Field

^{*} Reporting to be consistent with SWQM guidance and based on measurement capability.

References:

United States Environmental Protection Agency (USEPA) Methods for Chemical Analysis of Water and Wastes, Manual #EPA-600/4-79-020 U.S. Code of Federal Regulations (CFR). Title 40: Protection of Environment, Part 136

American Public Health Association (APHA), American Water Works Association (AWWA), and Water Environment Federation (WEF), Standard Methods for the Examination of Water and Wastewater, 24th Edition, 2022.

TCEQ SOP, V1 - TCEQ Surface Water Quality Monitoring Procedures, Volume 1: Physical and Chemical Monitoring Methods, 2012 (RG-415).

^{**} To be routinely reported when collecting data from perennial pools.

TABLE A7.8b Measurement Performance Specifications for Texas Research Institute for Environmental Studies (TRIES)

Flow Par	ameter	S			
Parameter	Units	Matrix	Method	Parameter Code	Lab
FLOW STREAM, INSTANTANEOUS (CUBIC FEET PER SEC)	cfs	water	TCEQ SOP V1	00061	Field
FLOW SEVERITY:1=No Flow,2=Low,3=Normal,4=Flood,5=High,6=Dry	NU	water	TCEQ SOP V1	01351	Field
FLOW MTH 1=GAGE 2=ELEC 3=MECH 4=WEIR/FLU 5=DOPPLER	NU	other	TCEQ SOP V1	89835	Field

References:

United States Environmental Protection Agency (USEPA) Methods for Chemical Analysis of Water and Wastes, Manual #EPA-600/4-79-020

U.S. Code of Federal Regulations (CFR). Title 40: Protection of Environment, Part 136

American Public Health Association (APHA), American Water Works Association (AWWA), and Water Environment Federation (WEF), Standard

Methods for the Examination of Water and Wastewater, 24th Edition, 2022.

TCEQ SOP, V1 - TCEQ Surface Water Quality Monitoring Procedures, Volume 1: Physical and Chemical Monitoring Methods, 2012 (RG-415).

TABLE A7.8c Measurement	Performa	ance Spec	cifications for Texa	as Researd	ch Instit	ute for I	Environme	ental Stu	udies (TRII	ES)
			Conventional Para	meters in	Water	1		,		
Parameter*	Units	Matrix	Method	Parameter Code	TCEQ AWRL	LOQ	LOQ Check Sample %Rec	Precision (RPD)	Bias %Rec. of LCS	Lab
RESIDUE, TOTAL NONFILTRABLE (MG/L)	mg/L	water	SM 2540D	00530	5	2.5	NA	NA	NA	TRIES
RESIDUE, TOTAL NONFILTRABLE (MG/L)	mg/L	water	SM 2540D	00530	5	1	NA	NA	NA	Eastex
NITROGEN, KJELDAHL, TOTAL (MG/L AS N)	mg/L	water	EPA 351.2	00625	0.2	0.2	70-130	20	80-120	Eastex
NITROGEN, AMMONIA, TOTAL (MG/L AS N)	mg/L	water	SM 4500-NH3 D	00610	0.1	0.1	70-130	20	80-120	TRIES
NITROGEN, AMMONIA, TOTAL (MG/L AS N)	mg/L	water	SM 4500-NH3 G	00610	0.1	0.1	70-130	20	80-120	Eastex
NITRITE NITROGEN, TOTAL (MG/L AS N)	mg/L	water	EPA 300.0 Rev. 2.1 (1993)	00615	0.05	0.05	70-130	20	85-115	TRIES
NITRITE NITROGEN, TOTAL (MG/L AS N)	mg/L	water	EPA 300.0 Rev. 2.1 (1993)	00615	0.05	0.05	70-130	20	80-120	Eastex
NITRATE NITROGEN, TOTAL (MG/L AS N)	mg/L	water	EPA 300.0 Rev. 2.1 (1993)	00620	0.05	0.05	70-130	20	85-115	TRIES
NITRATE NITROGEN, TOTAL (MG/L AS N)	mg/L	water	EPA 300.0 Rev. 2.1 (1993)	00620	0.05	0.05	70-130	20	80-120	Eastex
NITRITE PLUS NITRATE, TOTAL ONE LAB DETERMINED VALUE (MG/L AS N)	mg/L	water	SM 4500-NO3 F	00630	0.05	0.02	70-130	20	80-120	Eastex
PHOSPHORUS, TOTAL, WET METHOD (MG/L AS P)	mg/L	water	EPA 200.7	00665	0.06	0.04	70-130	20	85-115	TRIES
PHOSPHORUS, TOTAL, WET METHOD (MG/L AS P)	mg/L	water	EPA 200.7	00665	0.06	0.06	70-130	20	80-120	Eastex
CHLORIDE (MG/L AS CL)	mg/L	water	EPA 300.0 Rev. 2.1 (1993)	00940	5	4	70-130	20	85-115	TRIES
CHLORIDE (MG/L AS CL)	mg/L	water	EPA 300.0 Rev. 2.1 (1993)	00940	5	5	70-130	20	80-120	Eastex
SULFATE (MG/L AS SO4)	mg/L	water	EPA 300.0 Rev. 2.1 (1993)	00945	5	3	70-130	20	85-115	TRIES
SULFATE (MG/L AS SO4)	mg/L	water	EPA 300.0 Rev. 2.1 (1993)	00945	5	4	70-130	20	80-120	Eastex

References:

United States Environmental Protection Agency (USEPA) Methods for Chemical Analysis of Water and Wastes, Manual #EPA-600/4-79-020 U.S. Code of Federal Regulations (CFR). Title 40: Protection of Environment, Part 136

American Public Health Association (APHA), American Water Works Association (AWWA), and Water Environment Federation (WEF), Standard Methods for the Examination of Water and Wastewater, 24th Edition, 2022.

TCEQ SOP, V1 - TCEQ Surface Water Quality Monitoring Procedures, Volume 1: Physical and Chemical Monitoring Methods, 2012 (RG-415).

^{*} If TRIES does not have accreditation for a parameter or they have an issue with lab equipment, TRIES will subcontract to Eastex Lab the affected parameter(s) to get results for all the parameters they committed to collect and submit to H-GAC.

TABLE A7.8d Measure	ment Perfor						for En	vironmen	tal Stud	ies (TRIES)
Parameter*	Units	Matrix	acteriological Parai po t po	Parameter Code	TCEQ AWRL	LOQ	LOQ Check	Log Difference of Duplicates	Bias %Rec. of LCS	Гар
E.COLI, COLILERT, IDEXX METHOD, MPN/100ML	MPN/100 mL	water	IDEXX Colilert***	31699	1	1	NA	0.50**	NA	TRIES
E.COLI, COLILERT, IDEXX, HOLDING TIME	hours	water	NA	31704	NA	NA	NA	NA	NA	TRIES
E.COLI, COLILERT, IDEXX METHOD, MPN/100ML	MPN/100 mL	water	IDEXX Colilert or Colilert-18***	31699	1	1	NA	0.50**	NA	Eastex
E.COLI, COLILERT, IDEXX, HOLDING TIME	hours	water	NA	31704	NA	NA	NA	NA	NA	Eastex

^{*} If TRIES does not have accreditation for a parameter or they have an issue with lab equipment, TRIES will subcontract to Eastex Lab the affected parameter(s) to get results for all the parameters they committed to collect and submit to H-GAC.

References:

United States Environmental Protection Agency (USEPA) Methods for Chemical Analysis of Water and Wastes, Manual #EPA-600/4-79-020 U.S. Code of Federal Regulations (CFR). Title 40: Protection of Environment, Part 136

American Public Health Association (APHA), American Water Works Association (AWWA), and Water Environment Federation (WEF), Standard Methods for the Examination of Water and Wastewater, 24th Edition, 2022.

TCEQ SOP, V1 - TCEQ Surface Water Quality Monitoring Procedures, Volume 1: Physical and Chemical Monitoring Methods, 2012 (RG-415).

^{**} This value is not expressed as a relative percent difference. It represents the maximum allowable difference between the logarithm of the result of a sample and the logarithm of the duplicate result. See Section B5.

^{***} E. coli samples analyzed by these methods should always be processed as soon as possible and within 8 hours. When transport conditions necessitate delays in delivery longer than 6 hours, the holding time may be extended and samples must be processed as soon as possible and within 30 hours.

Appendix B: Task 3 Work Plan & Sampling Process Design and Monitoring Schedule (Plan)

Task 3: Water Quality Monitoring

Objectives: Water quality monitoring will focus on the characterization of a variety of locations and conditions. This will include a combination of the following:

- Planning and coordinating basin-wide monitoring.
- Routine, regularly scheduled monitoring to collect long-term information and support statewide assessment of water quality.
- Systematic, regularly scheduled short-term monitoring to screen water bodies for issues.
- Permit support monitoring to provide information for setting permit effluent limits; and
- Special study, intensive monitoring targeted to:
 - o identify sources and causes of pollution;
 - assess priority water quality issues;
 - o obtain background water quality information;
 - o provide information for setting site-specific permit effluent limits; and
 - o evaluate statewide, regional, and site-specific water quality standards.

Task Description: The Performing Party will coordinate and develop water quality monitoring strategies through the RMW and present strategies to the CRP Steering Committee for review and concurrence. To avoid duplication of monitoring efforts, the Performing Party will continue to coordinate monitoring efforts with other area data providers. The Performing Party also will continue to arrange regional training opportunities and workshops which support cooperative monitoring efforts (e.g., field methods, biological data collection, and habitat assessment).

The Performing Party will complete the following subtasks:

Monitoring Description – In FY2024, the Performing Party will collect quarterly samples at a minimum of twenty-one (21) water quality monitoring sites throughout the Performing Party's service area. Sampling efforts will include basic field parameters, flow, conventional chemical parameters, and bacteria. Most sites are located in the upper portions of watersheds or watersheds that fall outside the jurisdiction of local partner agencies.

In addition to the Performing Party's ambient monitoring program, six (6) local agencies are involved in this multi-basin monitoring effort. The Performing Party subcontracts with several entities to conduct monitoring and coordinates with others as in-kind contributors to conduct monitoring. The six participating agencies typically monitor a combined total of around 290 monitoring sites in the region (this number is subject to change based upon accessibility). Each agency's monitoring activities will be coordinated through the RMW and coordinated monitoring process. The coordination reduces monitoring duplication and allows all local agencies to see the data collection efforts of and data availability from other local agencies. Routine monitoring is scheduled at varying frequencies, which are determined by the parameters of concern for individual streams and/or proximity to a monitoring agency's field office and lab. Frequencies vary from quarterly for some parameters to monthly in highly impacted urban areas. Baseline monitoring will include the collection of field parameters at all sites and the collection of bacteria, flow, and conventional chemical parameters at sites where indicated. Additional details concerning the monitoring activities conducted by partner agencies are outlined in the Performing Party's Multi-Basin QAPP.

In FY2025, the Performing Party and area partners are expected to monitor at a similar level of effort as in FY2024. The actual number of sites, location, frequency, and parameters collected for FY2025 will be based on priorities identified at the CRP Steering Committee and Coordinated Monitoring meetings and included in the amended Appendix B schedule of the Performing Party's Multi-Basin QAPP.

All monitoring will be completed in accordance with the H-GAC Multi-Basin QAPP, the *TCEQ Surface Water Quality Monitoring Procedures, Volume 1: Physical and Chemical Monitoring Methods (RG-415)* and the *TCEQ Surface Water Quality Monitoring Procedures, Volume 2: Methods for Collecting and Analyzing Biological Assemblage and Habitat Data (RG-416)*. The Performing Party will include summaries of monitoring activities in the corresponding quarterly Progress Report.

24-Hour Dissolved Oxygen Monitoring - There are priority assessment units with dissolved oxygen impairments or concerns in the Performing Party's monitoring area. More data collection is needed to determine or verify the impairments. The Performing Party and/or sub-participants will conduct 24-hour dissolved oxygen monitoring at a minimum of seven stations, four times per year, throughout the two-year Contract period. The sites will be determined once budget is approved and site locations are coordinated and prioritized with TCEQ. The Performing Party will also include summaries of monitoring events in the corresponding quarterly progress report.

Permit Support Monitoring - During FY2024 and/or FY2025, the Performing Party may conduct monitoring activities to support TCEQ's Water Quality Division by collecting field parameters and discharge measurements at selected waterbodies identified by TCEQ. The sites will be determined once budget is approved and site locations are coordinated and prioritized with TCEQ. The Performing Party will include summaries of any activities in the corresponding quarterly Progress Report.

RMW - The RMW will meet during three of four quarters to discuss monitoring needs, problems, successes and changes. The third quarter meeting is conducted as the coordinated monitoring meeting (see below). The RMW is composed of Performing Party staff and representatives from local participating agencies, currently including Harris County Pollution Control Services, Environmental Institute of Houston, City of Houston-Health Department, City of Houston-Drinking Water Operations, Texas Research Institute for Environmental Studies, and the San Jacinto River Authority, as well as H-GAC's contract lab and TCEQ Region 12. Meeting notices will be sent to TCEQ, United States Geological Survey (USGS), Texas Parks and Wildlife, Texas Department of Health, GBEP, and other interested parties to invite input on monitoring discussions and strategies. Each agency/organization will be asked to send representatives from their field investigation staff and laboratory staff. The RMW will discuss CRP monitoring tasks and deliverables, basin monitoring priorities, training, and upcoming projects. This workgroup is designed to function as the mechanism through which data management needs and priorities are discussed. The Performing Party will include meeting summaries in the corresponding quarterly Progress Report.

RMW meeting results will be presented to the CRP Steering Committee for review and concurrence with various basin interests. This review process will be used to assess the current monitoring plan and adjust regional monitoring strategies as needed.

Coordinated Monitoring Meeting - The Performing Party will hold an annual coordinated monitoring meeting as described in the FY2024-2025 CRP Guidance. Qualified monitoring organizations will be invited to attend the working meeting in which monitoring needs and purposes will be discussed segment by segment and station by station. Information from participants and stakeholders will be used to select stations and parameters that will enhance overall water quality monitoring coverage, eliminate duplication of effort, and address basin priorities. A summary of the

changes to the monitoring schedule will be provided to the participants within two weeks of the meeting. Changes to the monitoring schedule will be entered into the statewide CMS (http://cms.lcra.org) and communicated to meeting attendees. Changes to monitoring schedules that occur during the year will be entered into the CMS and communicated to meeting attendees. All requirements related to meetings will be followed and required meetings will be conducted in-person or via TCEO approved virtual format.

Monitoring Activities - Each progress report will include a description of activities including all types of monitoring performed, number of sampling events, and the types of monitoring conducted in the quarter. The Performing Party will complete and submit a monitoring activities report as an attachment to the progress report.

Special Studies - Special studies are developed, as needed, based on local stakeholder input and the results of TCEQ or the Performing Party assessments. Status reports of each special study conducted will describe activities completed during the quarter. The status reports will be submitted along with the progress report. To help keep the public and basin stakeholders informed, the Performing Party's website will be updated in a timely manner to include key elements of special studies' reports or summaries (e.g., status reports, executive summary, maps, data analysis, final reports). Special studies will be coordinated with and approved by the TCEQ project manager prior to implementation.

Special studies for the FY2024-2025 Contract biennium may include:

Site Characterizations - Review of local monitoring data indicates there are many sites throughout the region where elevated levels of bacteria or low levels of dissolved oxygen are chronic conditions. Local entities have expressed interest in determining why these chronic conditions exist. Beginning with some of the most problematic sites, the Performing Party and other CRP partners may conduct "site specific" characterizations at future locations if determined necessary by data analysis. Habitat information, field verification of land cover, and identification of potential sources of pollution will be determined. Additional monitoring data will be collected from these small sub-watersheds as needed to supply data to support TCEQ's assessment process. Data collected during these intensive surveys may be submitted at TCEQ's request. The Performing Party will also include summaries of any activities in the corresponding quarterly Progress Report.

A short report of approximately one to five pages in length along with photographs will be submitted following completion of each characterization assessment. The reports will be submitted to TCEQ to assist with determining the appropriate water quality strategies to be pursued. An appendix to the Multi-Basin QAPP will be developed to provide the details of these characterizations.

Deliverables and Due Dates:

September 1, 2023 through August 31, 2024

- A. Conduct water quality monitoring, submit monitoring activities report, summarize activities, and submit with progress report December 15, 2023; March 15 and June 15, 2024
- B. RMW Meeting Notice Two weeks in advance of RMW meetings
- C. Coordinated Monitoring Meeting between March 15 and April 30,2024
- D. Coordinated Monitoring Meeting Summary of Changes within 2 weeks of the meeting
- E. Email notification that Coordinated Monitoring Schedule updates are complete May 31, 2024
- F. Special Study Status Reports (if applicable) December 15, 2023; March 15 and June 15, 2024
- G. Site Characterization Reports (if applicable) coordinate due date(s) with TCEQ project manager

September 1, 2024 through August 31, 2025

- A. Conduct water quality monitoring, submit monitoring activities report, summarize activities, and submit with progress report- September 15 and December 15, 2024; March 15, June 15 and August 15, 2025
- B. RMW Meeting Notice Two weeks in advance of RMW meetings
- C. Coordinated Monitoring Meeting between March 15 and April 30,2025
- D. Coordinated Monitoring Meeting Summary of Changes within 2 weeks of the meeting
- E. Email notification that Coordinated Monitoring Schedule updates are complete May 31, 2025
- F. Special Study Status Reports (if applicable) September 15 and December 15, 2024; March 15, June 15, and August 15, 2025
- G. Site Characterization Reports (if applicable) coordinate due date(s) with TCEQ Project Manager

Sample Design Rationale FY 2024

The sample design is based on the legislative intent of CRP. Under the legislation, the Basin Planning Agencies have been tasked with providing data to characterize water quality conditions in support of the Texas Water Quality Integrated Report, and to identify significant long-term water quality trends. Based on Steering Committee input, achievable water quality objectives and priorities and the identification of water quality issues are used to develop work plans which are in accord with available resources. As part of the Steering Committee process, the H-GAC coordinates closely with the TCEQ and other participants to ensure a comprehensive water monitoring strategy within the watershed. A very brief discussion of past or ongoing water quality issues are provided with each partner's section to justify the monitoring schedule.

Houston-Galveston Area Council (H-GAC):

H-GAC conducts routine monitoring at 21 sites on a quarterly basis. Flow measurements are collected at all sites whenever possible. These sites are located towards the perimeter of the region where other local partners do not monitor. These sites are located where there are no cities or communities able to conduct ambient water quality monitoring.

Nearly all current routine sites, parameters, and monitoring efforts will continue into FY24 except for site 20466 being transferred to TRIES and adding new sites 22429 and 22430 on Luce Bayou. Currently, H-GAC has three 24-hour DO sites to confirm whether there is a new or continuing 24-hour DO issue at the three sites. They are:

- o Site 16675 (Unnamed Trib of Buffalo Bayou at Glenwood Cemetery Segment 1013C_01).
- o Site 16676 (Unnamed Trib of Greens Bayou at Smith Rd in Houston Segment 1016D 01).
- o Site 16475 (Robinsons Bayou at FM270 in League City Segment 1101D_01)

Current sampling throughout the East Fork San Jacinto River watershed will continue between H-GAC, TRIES, and DWO. However, in response to new bacteria impairment on Tarkington Bayou which flows into Luce Bayou, H-GAC will be adding two new monitoring sites on Luce Bayou. TRIES will take over one existing monitoring site on Tarkington Bayou and add a new site upstream of the current. This monitoring will be in anticipation of a future TMDL project.

Harris County Pollution Control Services (HCPCS):

HCPCS staff monitor the Houston Ship channel, San Jacinto River tidal portion, side bays along the ship channel, Barbour's Cut, Clear Lake, and tributaries either monthly or every other month. Monitoring sites, parameters, and frequencies will not change in FY24.

Houston Health Department (HHD):

The city currently collects samples from 133 sites 6 times per year or approximately every other month. Staff have identified 13 shallow sites that are supposed to be only field measurements, observations, and bacteria sampling. No conventional parameters will be collected at the 13 sites. All 13 sites are part of the Bacteria Implementation Group (BIG) project area and continue to be sampled due to bacteria impairments in all of those waterways. Shallow sites include 11157, 16594, 16652, 16656, 16657, 16662, 16666, 16667, 18689, 18690, 18691, and 18692 in basin 10 plus 17487 in basin 11.

Site 11125 (Garners Bayou at North Sam Houston Pkwy) was removed last year due to safety. The site is added back to the schedule for FY24. HHD will sample from the banks only when it is safe to do so.

HHD collects TKN samples from only 25 of the 133 sites. TKN samples (no chlorophyll a) are collected quarterly.

Houston Drinking Water Operations (DWO);

DWO collects samples from Lake Houston and the Lake Houston watershed because Lake Houston is a drinking

water source for the region. Some sites are sampled monthly while others are sampled every other month. Twelve (12) TKN samples and three (3) chlorophyll a are sampled quarterly.

Station 22224 - Luce Bayou at Cry Baby Lane (segment 1002) has accessibility issues. They will continue with monthly monitoring. If the site cannot be reached for any reason, DWO will include an explanation on the data review checklist so H-GAC can include in the data summary report to TCEQ.

There will be no change to DWO sites, parameters, or frequencies.

SJRA Lake Conroe & The Woodlands

There are no changes to SJRA's sites, parameters, or frequencies during FY24.

SJRA monitors <u>Lake Conroe</u> at 10 sites monthly. The City of Houston DWO lab analyzes the conventional and bacteria samples. SJRA collects TKN and chlorophyll *a* samples at four (4) of the ten (10) sites quarterly.

SJRA monitors nine (9) sites in <u>The Woodlands</u> area. Four (4) sites are located on Lake Woodlands with TKN and chlorophyll *a* collected at one site quarterly. Field w/ sonde parameters are collected monthly with lab samples being collected quarterly. There are no TKN or chlorophyll *a* samples collected on the tributary sites.

Texas Research Institute for Environmental Studies (TRIES):

H-GAC contracts with TRIES to collect 11 sites on the East Fork San Jacinto River, Winters Bayou, and a few other small tributaries. Sites are monitored quarterly. In FY24, TRIES will add two sites on Tarkington Bayou, including a new site (22431) and a site transferred from H-GAC (20466). There will be a TKN sample collected from each of the Tarkington Bayou sites. There are no plans to change the parameters or frequency of other monitoring sites. There is new bacteria impairment for Winters Bayou in the 2022 Integrated Report (IR) as well as Tarkington Bayou. Site 21936 (Winters Bayou at SH150) was dropped from schedule in FY24.

University of Houston-Clear Lake, Environmental Institute of Houston (EIH):

EIH is contracted to collect samples in Basin 9 (Cedar Bayou), Basin 11 (Galveston and Brazoria Counties), Basin 13 (Austin, Brazoria, Colorado, Wharton, and Matagorda Counties), and Basin 24 (Bays and Estuaries). Sites are monitored on a quarterly basis. In FY24, EIH will also collect 24-hour DO at seven (7) sites quarterly to confirm whether there are new or continuing 24-hour DO issues. Those sites are:

- o Site 11118 (Cedar Bayou above tidal at FM 1960 Segment 0902)
- o Site 11405 (Armand Bayou at Fairmont Parkway Segment 1113A)
- Site 12155 (Caney Creek above tidal 1305_03)
- Site 16564 (Lake Madeline in Galveston Segment 2424B).
- o Site 20721 (West Bernard Creek at Wharton CR 225 East 1302B).
- Site 20723 (Mound Creek at Brazoria CR 450/ Jackson Settlement RD upstream of FM 1301 1302E).
- o Site 21734 (Brushy Bayou at FM213 Segment 1105E)

EIH added routine sites on Gum Tree Branch (16371) and another site on Linnville Bayou (12138). Both sites are located in Wharton County and have bacteria impairments. Sampling will update the information on the impairment. Routine monitoring was also added at Caney Creek (12155) in Matagorda County.

Monitoring dropped for FY24 was site 22232 (Cotton Bayou) BS & RT monitoring, sites 11490 (Oyster Bayou) and 21079 (Cary Bayou) BS only sites, site 18636 (Marys Creek) RT monitoring only, and site 17085 (Chocolate Bay) RT monitoring.

Site Selection Criteria

This data collection effort involves monitoring routine water quality using procedures that are consistent with the TCEQ SWQM program. Some general guidelines are followed when selecting sampling sites, as outlined below, and discussed thoroughly in SWQM Procedures, Volumes I and II. Overall consideration is given to accessibility and safety. All monitoring activities have been developed in coordination with the CRP Steering Committee and with the TCEQ. The site selection criteria specified are those the TCEQ would like considered to produce data which is complementary to that collected by the state and which may be used in assessments, etc.

- 1. Locate stream sites so that samples can be safely collected from the centroid of flow. Centroid is defined as the midpoint of that portion of stream width which contains 50 percent of the total flow. If multiple potential sites on a stream segment are appropriate for monitoring, choose one that would best represent the water body, and not a site that displays unusual conditions or contaminant source(s). Avoid backwater areas or eddies when selecting a stream site.
- 2. At a minimum for reservoirs, locate sites near the dam (reservoirs) and in the major arms. Larger reservoirs might also include stations in the middle and upper (riverine) areas. Select sites that best represent the water body by avoiding coves and back water areas. A single monitoring site is considered representative of 25 percent of the total reservoir acres, but not more than 5,120 acres.
- 3. Monitoring sites are selected to maximize stream coverage or basin coverage. Very long segments may require more stations. As a rule of thumb, stream segments between 25 and 50 miles long require two stations, and longer than 50 miles require three or more depending on the existence of areas with significantly different sources of contamination or potential water quality concerns. Major hydrological features, such as the confluence of a major tributary or an instream dam, may also limit the spatial extent of an assessment based on one station.
- 4. Because historical water quality data can be very useful in assessing use attainment or impairment, it may be best to use sites that are on current or past monitoring schedules.
- 5. All classified segments (including reservoirs) should have at least one Monitoring site that adequately characterizes the water body, and monitoring should be coordinated with the TCEQ or other qualified monitoring entities reporting routine data to TCEQ.
- 6. Monitoring sites may be selected to bracket sources of pollution, influence of tributaries, changes in land uses, and hydrological modifications.
- 7. Sites should be accessible. When possible, stream sites should have a USGS or IBWC stream flow gauge. If not, it should be possible to conduct flow measurement during routine visits.

Monitoring Sites for FY 2024

Monitoring Tables for FY2024 are presented on the following pages. This monitoring table is modified annually.

Monitoring Sites for FY 2024

Table B1.1 Sample Design and Schedule, FY 2024

Table B1.1 Sample Design and Schedule, FY 2024															
Site Description	Station ID	Water-body ID	Basin	Region	SE	CE	MT	Field	Conv	Bacteria	Flow	24 hr DO	TKN	Chloro-phyll a	Comments
															Added in FY23;
															continue in
ROBINSONS BAYOU AT FM270 IN LEAGUE CITY	16475	1101D	11	12	HG	HG	BS					4			FY24.
UNNAMED TRIB OF BUFFALO BAYOU AT GLENWOOD															Added in FY22;
CEMETARY RD 160 M W OF INTERSECT OF LUBBOCK															Continue in
ST AND SAWYER ST IN CENTRAL HOUSTON	16675	1013C	10	12	HG	HG	BS				4	4			FY24.
															Added in FY23;
UNNAMED TRIB OF GREENS BAYOU AT SMITH ROAD,															Continue in
HOUSTON	16676	1016D	10	12	HG	HG	BS				4	4			FY24
CEDAR BAYOU ABOVE TIDAL 30 METERS															
DOWNSTREAM OF FM 1942 AT EAST BANK	11118	0902	9	12	HG	UI	BS				4	4			Added in FY24;
															Added in FY22;
ARMAND BAYOU AT FAIRMONT PARKWAY ALONG															Transferred to
MEDIAN AT MIDPOINT BETWEEN BRIDGES	11405	1113A	11	12	HG	UI	BS				4	4			UI in FY23;
CANEY CREEK ABOVE TIDAL 35 M DOWNSTREAM OF															
ASHWOOD RD/FM 3156 1.24 KM SOUTHWEST OF															
MATAGORDA CR 1728 ASHWOOD	12155	1305	13	12	HG	UI	BS				4	4			Added in FY24;
LAKE MADELINE AT CORNER OF BELUCHE DRIVE AND															
DOMINIQUE DRIVE IN GALVESTON	16564	2424B	24	12	HG	UI	BS					4			
WEST BERNARD CREEK AT WHARTON CR 225 EAST OF															
HUNGERFORD	20721	1302B	13	12	HG	UI	BS				4	4			Added in FY24;
MOUND CREEK AT BRAZORIA CR 450/JACKSON															ļ
SETTLEMENT ROAD 1.22 KILOMETERS UPSTREAM OF															
FM 1301 IN WEST OF WEST COLUMBIA	20723	1302E	11	12	HG	UI	BS				4	4			Added in FY24.

Site Description	Station ID	Water-body ID	Basin	Region	SE	CE	MT	Field	Conv	Bacteria	Flow	24 hr DO	TKN	Chloro-phyll a	Comments
BRUSHY BAYOU AT FM213	21734	1105E	11	12	HG	UI	BS				4	4			Added back into CMS in FY22 per assessor request;
SAN JACINTO RIVER TIDAL IMMEDIATELY	21/34	11031	11	12	110	01	53				7	-			request,
DOWNSTREAM OF IH 10 BRIDGE EAST OF															
CHANNELVIEW	11193	1001	10	12	HG	НС	RT	12	12	12					
SAN JACINTO RIVER TIDAL 23 METERS SOUTH AND															
735 METERS EAST OF INTERSECTION OF WALLISVILLE															
ROAD AND 7TH STREET	11198	1001	10	12	HG	HC	RT	12	12	12					
SAN JACINTO RIVER TIDAL IMMEDIATELY															
DOWNSTREAM OF US 90 BRIDGE EAST OF SHELDON	11200	1001	10	12	HG	HC	RT	12	12	12			4		
SAN JACINTO RIVER TIDAL AT MAGNOLIA GARDENS 1.78 KM UPSTREAM OF US BUS 90U/ BEAUMONT															
HIGHWAY IN HOUSTON	11201	1001	10	12	HG	HC	RT	12	12	12					
HOUSTON SHIP CHANNEL AT BAYTOWN TUNNEL/CM 103 1.84 KM NORTH AND 1.17 KM EAST OF INTERSECTION OF SH 225 AND SH 146	11254	1005	10	12	HG	НС	RT	12	12	12					
HOUSTON SHIP CHANNEL AT SAN JACINTO PK WEST	11234	1003	10	12	110	TIC	IXI	12	12	12					
OF THE BATTLESHIP TX 317 M N AND 303 M W OF INTERSECTION OF BATTLEGROUND RD AND MARKER															
DR	11264	1006	10	12	HG	НС	RT	12	12	12					
HOUSTON SHIP CHANNEL AT CONFLUENCE WITH GREENS BAYOU/CM 152	11271	1006	10	12	HG	НС	RT	12	12	12					
HOUSTON SHIP CHANNEL/BUFFALO BAYOU HSC AT	112/1	1000	10	12	пО	пС	ΝI	12	12	12					
WASHBURN TUNNEL	11283	1007	10	12	HG	НС	RT	12	12	12					
HSC/BUFFALO BAYOU IN TURNING BASIN 2.82 K UPSTREAM OF CONFLUENCE WITH BRAYS BAYOU 433	11292	1007	10	12	HG	НС	RT	12	12	12					

Site Description	Station ID	Water-body ID	Basin	Region	SE	CE	MT	Field	Conv	Bacteria	Flow	24 hr DO	TKN	Chloro-phyll a	Comments
M S AND 182 M W OF INTERSECT OF SIGNET AND															
DORSETT															
CLEAR LAKE AT SH 146 DRAWBRIDGE	13332	2425	24	12	HG	HC	RT	6	6	6			4	4	
TABBS BAY MIDWAY BETWEEN GOOSE CREEK AND															
UPPER HOG ISLAND	13338	2426	24	12	HG	HC	RT	6	6	6			4	4	
BLACK DUCK BAY AT MID BAY 0.6 KM NE OF SH 146															
BRIDGE AND 0.6 KM SE OF END OF OKLAHOMA ST IN															
BAYTOWN	13340	2428	24	12	HG	НС	RT	6	6	6			4	4	
BURNETT BAY AT MID BAY 1.3 KM SSW OF															
CONFLUENCE WITH SPRING GULLY AND 1.6 KM SE OF															
LYNCHBURG ROAD	13344	2430	24	12	HG	HC	RT	6	6	6			4	4	
ARMAND BAYOU TIDAL 25 M WEST OF CLEAR LAKE															
PARK FISHING PIER IN MUD LAKE/PASADENA LAKE IN															
HARRIS COUNTY	15455	1113	11	12	HG	HC	RT	6	6	6			4	4	
CLEAR CREEK TIDAL AT THE CONFLUENCE WITH															
CLEAR LAKE 30 M NORTH AND 266 M WEST OF DAVIS															
ROAD AT VEGA COURT IN LEAGUE CITY IN HARRIS															
COUNTY	16573	1101	11	12	HG	НС	RT	6	6	6			4	4	
HOUSTON SHIP CHANNEL AT CARGILL TERMINAL															
NORTH OF TIDAL ROAD	16617	1006	10	12	HG	НС	RT	12	12	12					
HOUSTON SHIP CHANNEL W OF EXXON DOCKS AND N															
OF ALEXANDER ISLAND 316 M S AND 1.55 KM W OF															
INTERSECTION OF BAYWAY DR AND BAYTOWN AVE	16618	1005	10	12	HG	HC	RT	12	12	12	-				
HOUSTON SHIP CHANNEL AT LYNCHBURG FERRY INN															
SOUTH OF LYNCHBURG RD 658 M N AND 802 M E OF															
INTERSECTION OF BATTLEGROUND RD AND TIDAL RD	16619	1005	10	12	HG	HC	RT	12	12	12					
HOUSTON SHIP CHANNEL/BUFFALO BAYOU AT MAYO															
SHELL RD 1.42 KM S AND 41 M W OF INTERSECTION	4.000	400=													
OF MAYO SHELL RD AND CLINTON DR IN HOUSTON	16620	1007	10	12	HG	HC	RT	12	12	12					

Site Description	Station ID	Water-body ID	Basin	Region	SE	CE	MT	Field	Conv	Bacteria	Flow	24 hr DO	TKN	Chloro-phyll a	Comments
SAN JACINTO RIVER TIDAL AT CONFLUENCE WITH															
HSC 226 M S AND 1.07 KM W OF INTERSECTION OF S															
LYNCHBURG RD AND POQUENO RD IN HOUSTON	16621	1005	10	12	HG	НС	RT	12	12	12					
SAN JACINTO RIVER TIDAL AT BANANA BEND ROAD															
AT END OF PAVEMENT IN HOUSTON	16622	1001	10	12	HG	HC	RT	12	12	12			4	4	
SAN JACINTO RIVER TIDAL MID STREAM AT															
TERMINUS OF SHADY LANE IN CHANNELVIEW 9 M S															
AND 648 M W OF INTERSECTION OF SHADY LN AND															
PARK DR	17919	1001	10	12	HG	HC	RT	12	12	12					
CRYSTAL BAY IN BAYTOWN 383 METERS WEST AND															
137 METERS SOUTH OF THE INTERSECTION OF															
BAYSHORE DRIVE AND CROW ROAD	17921	2430A	24	12	HG	HC	RT	6	6	6					
SCOTT BAY 1.2 KM SW OF INTERSECTION OF BAYWAY															
DRIVE AND PARK STREET IN BAYTOWN	17922	2429	24	12	HG	HC	RT	6	6	6			4	4	
UPPER SAN JACINTO BAY UNDERNEATH ELECTRICAL															
TRANSMISSION LINES 2.1 KM E/NE OF INTERSECTION															
OF MILLER CUTOFF RD AND OLD CLARK RD	17923	2427	24	12	HG	HC	RT	6	6	6			4	4	
LOWER SAN JACINTO BAY MID CHANNEL SOUTH OF															
SH 146 1 KM NE OF INTERSECTION OF SH 225 AND															
STRANG ROAD IN LAPORTE	17924	2427	24	12	HG	HC	RT	6	6	6			4	4	
BARBOURS CUT NEAR NORTH BANK 0.5 KM NNW OF															
THE INTERSECTION OF BARBOURS CUT BLVD AND															
MAPLE ST	17925	2436	24	12	HG	HC	RT	6	6	6					
GOOSE CREEK NEAR SH 146 340 M SOUTH OF THE															
INTERSECTION OF SH 146 AND WEST MAIN IN															
BAYTOWN	17927	2426C	24	12	HG	HC	RT	6	6	6					
HARRIS COUNTY FLOOD CONTROL DITCH A															
TRIBUTARY TO TAYLOR BAYOU 385 M UPSTREAM OF	20012	2425E	24	12	HG	HC	RT	6	6	6					

Site Description	Station ID	Water-body ID	Basin	Region	SE	CE	MT	Field	Conv	Bacteria	Flow	24 hr DO	TKN	Chloro-phyll a	Comments
CONFLUENCE WEST OF SH 146 AT PORT ROAD IN															
HARRIS COUNTY															
TAYLOR BAYOU MID CHANNEL 400 M DOWNSTREAM															
OF PORT ROAD BRIDGE IN HARRIS COUNTY	20013	2425A	24	12	HG	HC	RT	6	6	6					
CLEAR LAKE UNNAMED INLET 115 M SOUTHWEST OF															
THE INTERSECTION OF NASA ROAD 1 AND															
OCEANVIEW DRIVE IN SEABROOK IN HARRIS COUNTY	20014	2425	24	12	HG	НС	RT	6	6	6					
TAYLOR LAKE MID LAKE AT BLUE WINDOWS 230 M															
SOUTH OF LAKEWAY DRIVE AT RAY SHELL															
COURT/HARBOR COVE CIRCLE IN HARRIS COUNTY	20015	2425A	24	12	HG	HC	RT	6	6	6			4	4	
CARPENTERS BAYOU AT MOUTH OF BARGE CANAL 32															
METERS WEST AND 666 METERS SOUTH FROM THE															
INTERSECTION OF DE ZAVALLA ROAD AND HARDING															
ROAD/HARDING STREET IN HARRIS COUNTY	20797	1006	10	12	HG	HC	RT	12	12	12					
BUFFALO BAYOU IMMEDIATELY DOWNSTREAM OF															
GREEN BUSH ROAD 3.1 MILES SOUTHEAST OF KATY	11145	1014B	10	12	HG	HG	RT	4	4	4	4		4		
CANEY CREEK IMMEDIATELY UPSTREAM OF FM 2090															
WEST OF SPLENDORA	11335	1010	10	12	HG	HG	RT	4	4	4	4		4		
LAKE CREEK AT EGYPT COMMUNITY ROAD 8.3 MILES															
SOUTHWEST OF CONROE	11367	1015	10	12	HG	HG	RT	4	4	4	4		4		
EAST FORK SAN JACINTO RIVER IMMEDIATELY															
DOWNSTREAM OF SH 150 WEST OF COLDSPRING	17431	1003	10	10	HG	HG	RT	4	4	4	4		4		
MOUND CREEK 167 METERS DOWNSTREAM OF															
MULLIGAN ROAD 1.35 KM UPSTREAM OF															
CONFLUENCE WITH LAKE CREEK	17937	1015A	10	12	HG	HG	RT	4	4	4	4		4		
LAKE CREEK AT SH 105 1.0 KM NORTHEAST OF FM															
1486 NEAR DOBBIN AND 8.0 KM WEST OF															
MONTGOMERY TEXAS	18192	1015	10	12	HG	HG	RT	4	4	4	4				

Site Description	Station ID	Water-body ID	Basin	Region	SE	CE	MT	Field	Conv	Bacteria	Flow	24 hr DO	TKN	Chloro-phyll a	Comments
SPRING CREEK AT ROBERTS CEMETERY ROAD WEST-															
NORTHWEST OF TOMBALL	18868	1008	10	12	HG	HG	RT	4	4	4	4				
CANEY CREEK AT FIRETOWER ROAD WEST TO THE															
CITY OF WOODBRANCH	20452	1010	10	12	HG	HG	RT	4	4	4	4				
CANEY CREEK AT COUNTY LINE ROAD IN															
MONTGOMERY COUNTY EAST TO THE CITY OF WILLIS	20453	1010	10	12	HG	HG	RT	4	4	4	4				
PEACH CREEK AT COUNTY LINE ROAD-FM 3081															
NORTHEAST OF CONROE IN MONTGOMERY COUNTY	20454	1011	10	12	HG	HG	RT	4	4	4	4				
LITTLE CYPRESS CREEK AT MUESCHKE ROAD 4.4															
KILOMETERS NORTH OF SH 290 NORTHWEST OF															
CYPRESS	20456	1009E	10	12	HG	HG	RT	4	4	4	4				
CYPRESS CREEK AT KATY HOCKLEY ROAD 7															
KILOMETERS SOUTH OF SH 290 WEST OF CYPRESS	20457	1009	10	12	HG	HG	RT	4	4	4	4				
WALNUT CREEK AT DECKER PRAIRIE ROSEHL ROAD															
NORTHWEST OF TOMBALL	20462	10081	10	12	HG	HG	RT	4	4	4	4		4		
BRUSHY CREEK AT GLENMONT ESTATES BOULEVARD															
265 METERS NORTH AND 35 METERS WEST TO THE															
INTERSECTION OF ARNDT LANE AND ANN CIRCLE															
WEST OF TOMBALL	20463	1008J	10	12	HG	HG	RT	4	4	4	4		4		
HORSEPEN CREEK AT FM 529 1.9 KILOMETERS EAST															
OF SH 6 NORTHWEST OF HOUSTON	20465	1014C	10	12	HG	HG	RT	4	4	4	4				
WHITE OAK CREEK AT MEMORIAL DRIVE IN CONROE	20731	1004J	10	12	HG	HG	RT	4	4	4	4		4		
WINTERS BAYOU AT TONY TAP ROAD NEAR															
CLEVELAND	21417	1003A	10	10	HG	HG	RT	4	4	4	4		4		
MILL CREEK AT FM 149 NORTH OF TOMBALL	21957	1008A	10	12	HG	HG	RT	4	4	4	4		4		
SPRING BRANCH IMMEDIATELY DOWNSTREAM OF															
SHAKEY HOLLOW WEST OF WOODBRANCH VILLAGE															
IN MONTGOMERY COUNTY	21965	1010C	10	12	HG	HG	RT	4	4	4	4		4		

Site Description	Station ID	Water-body ID	Basin	Region	SE	CE	MT	Field	Conv	Bacteria	Flow	24 hr DO	TKN	Chloro-phyll a	Comments
LUCE BAYOU AT GRAND PARKWAY/SH-99															
NORTHEAST OF LAKE HOUSTON	22429	1002B	10	12	HG	HG	RT	4	4	4	4		4		ADDED in FY24
LUCE BAYOU AT HWY 321 APPROXIMATELY 1.1 KM															
SOUTH OF COUNTY ROAD 2322	22430	1002B	10	12	HG	HG	RT	4	4	4	4		4		ADDED in FY24
															ADDED back
GARNERS BAYOU AT NORTH SAM HOUSTON								_		_	_				into CMS in
PARKWAY/SHLOOP8 NE OF HOUSTON	11125	1016A	10	12	HG	НН	RT	6	6	6	6				FY24
															Flow from
HALLS BAYOU AT IFAISEN BRIVE IN HOUSTON	44426	40000	4.0	42			ОТ	_		_					USGS gage
HALLS BAYOU AT JENSEN DRIVE IN HOUSTON	11126	1006D	10	12	HG	НН	RT	6	6	6	6		4		8076500
HALLS BAYOU 87 METERS UPSTREAM OF TIDWELL	44427	40000	4.0	42			ОТ	_		_					
ROAD IN SETTEGAST	11127	1006D	10	12	HG	НН	RT	6	6	6					
HUNTING BAYOU IMMEDIATELY DOWNSTREAM OF	44420	40070	4.0	42			ОТ	_		_					
IH 10 EAST OF HOUSTON	11128	1007R	10	12	HG	НН	RT	6	6	6					[] f
LILINITING DAVOLLAT MODELLLOOD FAST/ILL 610 IN															Flow from
HUNTING BAYOU AT NORTH LOOP EAST/IH 610 IN HOUSTON	11129	1007R	10	12	HG	НН	RT	6	6	6	6				USGS gage 8075770
HOUSTON	11129	1007K	10	12	по	пп	ΝI	0	0	0	0				Flow from
SIMS BAYOU AT TELEPHONE ROAD/SH 35 IN															USGS gage
HOUSTON	11132	1007D	10	12	HG	НН	RT	6	6	6	6				8075500
SIMS BAYOU AT CULLEN BLVD/FM 865 SOUTH OF	11132	10070	10	12	110	1111	IVI	U	U	U	U				8073300
HOUSTON	11133	1007D	10	12	HG	НН	RT	6	6	6					
HOOSTON	11133	10070	10	12	110	1111	11.1	U	0	J					Flow from
															USGS gage
SIMS BAYOU AT HIRAM CLARKE RD IN HOUSTON	11135	1007D	10	12	HG	НН	RT	6	6	6	6		4		8075400
BRAYS BAYOU IMMEDIATELY DOWNSTREAM OF	11133	10070	10	12	110	- 1111	111				-		7		3373400
ALMEDA ROAD SOUTHWEST OF HOUSTON	11138	1007B	10	12	HG	НН	RT	6	6	6					

Site Description	Station ID	Water-body ID	Basin	Region	SE	CE	MT	Field	Conv	Bacteria	Flow	24 hr DO	TKN	Chloro-phyll a	Comments
															Flow from USGS gage
BRAYS BAYOU AT SOUTH MAIN ST IN HOUSTON	11139	1007B	10	12	HG	нн	RT	6	6	6	6		4		8075000
BRAYS BAYOU AT SOUTH GESSNER DRIVE IN HOUSTON	11140	1007B	10	12	HG	НН	RT	6	6	6	6		4		Flow from USGS gage 8074810
LITTLE WHITE OAK BAYOU AT TRIMBLE STREET/NORTH EDGE OF HOLLYWOOD CEMETERY IN HOUSTON	11148	1013A	10	12	HG	НН	RT	6	6	6	6		4		Flow from USGS gage 8074540
VOGEL CREEK IMMEDIATELY DOWNSTREAM OF WEST LITTLE YORK ROAD	11155	1017C	10	12	HG	НН	RT	6	6	6	-		•		007 13 10
ROLLING FORK CREEK IMMEDIATELY DOWNSTREAM									0						Challe atte
OF LAKE LANE SOUTH MAYDE CREEK IMMEDIATELY DOWNSTREAM OF MEMORIAL DRIVE	11157	1017F 1014H	10	12	HG HG	НН	RT RT	6	6	6			4		Shallow site
BRAYS/KEEGANS BAYOU IMMEDIATELY DOWNSTREAM OF ROARK ROAD NEAR US 59 AT BELTWAY 8 IN SOUTHWEST HOUSTON	11169	1007C	10	12	HG	НН	RT	6	6	6	6				Flow from USGS gage 8074800
LITTLE VINCE BAYOU IMMEDIATELY DOWNSTREAM OF NORTH MAIN STREET IN PASADENA TX	11172	1007	10	12	HG	НН	RT	6	6	6					
WILLOW CREEK IMMEDIATELY UPSTREAM OF GOSLING ROAD	11185	1008H	10	12	HG	НН	RT	6	6	6			4		
RUMMEL CREEK IMMEDIATELY DOWNSTREAM OF MEMORIAL DRIVE IN WEST HOUSTON	11188	1014N	10	12	HG	НН	RT	6	6	6					
GREENS BAYOU IMMEDIATELY DOWNSTREAM OF GREEN RIVER ROAD/LEY ROAD IN HOUSTON	11279	1006	10	12	HG	H	RT	6	6	6	6		4		Flow from USGS gage 8076700
HUNTING BAYOU TIDAL AT FEDERAL ROAD BRIDGE IN HOUSTON	11298	1007	10	12	HG	НН	RT	6	6	6					

Site Description	Station ID	Water-body ID	Basin	Region	SE	CE	MT	Field	Conv	Bacteria	Flow	24 hr DO	TKN	Chloro-phyll a	Comments
SIMS BAYOU TIDAL IMMEDIATELY DOWNSTREAM OF								_		_					
LAWNDALE AVENUE IN HOUSTON	11302	1007	10	12	HG	НН	RT	6	6	6					
BRAYS BAYOU TIDAL AT 75TH STREET IN HOUSTON	11306	1007	10	12	HG	НН	RT	6	6	6					
BRAYS BAYOU TIDAL AT SCOTT STREET IN HOUSTON	11309	1007	10	12	HG	НН	RT	6	6	6					
SPRING CREEK IMMEDIATELY DOWNSTREAM OF RILEY FUZZEL ROAD	11312	1008	10	12	HG	НН	RT	6	6	6	6		4		Flow from USGS gage 8068520
SPRING CREEK 1.13 KM UPSTREAM OF SH 249 NEAR DRAGONFLY RD IN SPRING CREEK PARK	11315	1008	10	12	HG	НН	RT	6	6	6			4		REPLACED site 11314 in FY2020 due to bridge construction
SPRING CREEK IMMEDIATELY UPSTREAM OF DECKER															
PRAIRIE ROSEHILL ROAD	11323	1008	10	12	HG	НН	RT	6	6	6					
CYPRESS CREEK AT STEUBNER-AIRLINE ROAD IN HOUSTON CYPRESS CREEK AT SH 249	11330 11331	1009 1009	10 10	12 12	HG HG	НН	RT RT	6	6	6	6		4		Flow from USGS gage 8068900
CYPRESS CREEK IMMEDIATELY DOWNSTREAM OF GRANT ROAD NEAR CYPRESS BUFFALO BAYOU TIDAL AT MCKEE ST IN HOUSTON	11332 11345	1009	10	12	HG HG	НН	RT RT	6	6	6	6		4		Flow from USGS gage 8068800
BUFFALO BAYOU TIDAL AT MCKEE ST IN HOUSTON BUFFALO BAYOU TIDAL AT SHEPHERD DRIVE IN HOUSTON	11343	1013	10	12	HG	НН	RT	6	6	6	6				Flow from USGS gage 8074000
BUFFALO BAYOU AT VOSS ROAD	11356	1014	10	12	HG	НН	RT	6	6	6					
BUFFALO BAYOU IMMEDIATELY DOWNSTREAM OF WEST BELTWAY 8 IN HOUSTON	11360	1014	10	12	HG	НН	RT	6	6	6	6				Flow from USGS gage 8073600

Site Description	Station ID	Water-body ID	Basin	Region	SE	CE	M	Field	Conv	Bacteria	Flow	24 hr DO	TKN	Chloro-phyll a	Comments
BUFFALO BAYOU AT WILCREST DRIVE IN HOUSTON	11361	1014	10	12	HG	НН	RT	6	6	6					
BUFFALO BAYOU IMMEDIATELY DOWNSTREAM OF DAIRY ASHFORD ROAD WEST OF HOUSTON	11362	1014	10	12	HG	нн	RT	6	6	6	6				Flow from USGS gage 8073500
BUFFALO BAYOU AT ELDRIDGE ROAD IN HOUSTON	11363	1014	10	12	HG	НН	RT	6	6	6					
BUFFALO BAYOU AT SH 6	11364	1014	10	12	HG	нн	RT	6	6	6	6		4		Flow from USGS gage 8072500
GREENS BAYOU AT UNNAMED ROAD IN BROCK PARK GOLF COURSE 705 METERS UPSTREAM OF THE CONFLUENCE WITH HALLS BAYOU	11368	1016	10	12	HG	нн	RT	6	6	6					REPLACED site 11369 in FY23
GREENS BAYOU IMMEDIATELY DOWNSTREAM OF MT HOUSTON PARKWAY	11370	1016	10	12	HG	НН	RT	6	6	6					HHD confirmed this site for FY23
GREENS BAYOU AT US 59 NORTH OF HOUSTON	11371	1016	10	12	HG	НН	RT	6	6	6			4		
GREENS BAYOU AT WEST GREENS PARKWAY	11376	1016	10	12	HG	НН	RT	6	6	6					
WHITEOAK BAYOU AT NORTH SHEPHERD STREET IN HOUSTON	11389	1017	10	12	HG	нн	RT	6	6	6					
WHITEOAK BAYOU AT NORTH HOUSTON ROSSLYN ROAD	11394	1017	10	12	HG	нн	RT	6	6	6			4		
WHITEOAK BAYOU IMMEDIATELY DOWNSTREAM OF TAHOE DRIVE	11396	1017	10	12	HG	нн	RT	6	6	6					
ARMAND BAYOU AT GENOA-RED BLUFF RD NE OF ELLINGTON AFB	11404	1113A	11	12	HG	нн	RT	6	6	6					
ARMAND BAYOU AT FAIRMONT PARKWAY ALONG MEDIAN AT MIDPOINT BETWEEN BRIDGES	11405	1113A	11	12	HG	нн	RT	6	6	6			4		
ARMAND BAYOU TIDAL AT BAY AREA BLVD NORTH OF NASA AT MIDDLE OF MEDIAN BETWEEN 2 BRIDGES EASTERN SHORE	11503	1113	11	12	HG	нн	RT	6	6	6					

Site Description	Station ID	Water-body ID	Basin	Region	SE	CE	MT	Field	Conv	Bacteria	Flow	24 hr DO	TKN	Chloro-phyll a	Comments
GREENS BAYOU 184 METERS DOWNSTREAM OF															Flow from USGS gage
KNOBCREST DRIVE	13778	1016	10	12	HG	НН	RT	6	6	6	6		4		8075900
LITTLE CYPRESS CREEK IMMEDIATELY DOWNSTREAM	13770	1010	10		110										0073300
OF KLUGE ROAD IN HOUSTON	14159	1009E	10	12	HG	НН	RT	6	6	6			4		
WHITEOAK BAYOU IMMEDIATELY DOWNSTREAM OF															
WEST 43RD STREET IN NORTHWEST HOUSTON	15829	1017	10	12	HG	НН	RT	6	6	6			4		
WHITEOAK BAYOU AT WEST TIDWELL ROAD IN															
NORTHWEST HOUSTON	15831	1017	10	12	HG	НН	RT	6	6	6					
BUFFALO BAYOU TIDAL IMMEDIATELY UPSTREAM OF															
JENSEN DRIVE IN HOUSTON	15841	1007	10	12	HG	НН	RT	6	6	6					
BUFFALO BAYOU TIDAL AT SABINE STREET NORTH OF															
ALLEN PARKWAY IN HOUSTON	15843	1013	10	12	HG	НН	RT	6	6	6					
BUFFALO BAYOU AT CHIMNEY ROCK ROAD IN															
HOUSTON	15845	1014	10	12	HG	НН	RT	6	6	6					
BUFFALO BAYOU IMMEDIATELY DOWNSTREAM OF	45046	4044	4.0	4.0			ь.		_						
BRIAR FOREST DRIVE IN WEST HOUSTON	15846	1014	10	12	HG	НН	RT	6	6	6					
TURKEY CREEK 200 METERS UPSTREAM OF MEMORIAL DRIVE AT BRIDGE IN MEMORIAL OAKS															
CEMETERY	15847	1014K	10	12	HG	НН	RT	6	6	6					
BRAYS BAYOU IMMEDIATELY DOWNSTREAM OF SH 6	13047	10141	10	12	110	1111	IVI	0	U	0					
IN WEST HOUSTON	15848	1007B	10	12	HG	НН	RT	6	6	6			4		
BRAYS BAYOU AT DAIRY ASHFORD STREET IN WEST													•		
HOUSTON	15850	1007B	10	12	HG	НН	RT	6	6	6					
BRAYS BAYOU AT WILCREST DRIVE IN WEST															
HOUSTON	15851	1007B	10	12	HG	НН	RT	6	6	6					
BRAYS BAYOU IMMEDIATELY DOWNSTREAM OF															
BEECHNUT STREET IN WEST HOUSTON	15852	1007B	10	12	HG	НН	RT	6	6	6					

Site Description	Station ID	Water-body ID	Basin	Region	SE	CE	MT	Field	Conv	Bacteria	Flow	24 hr DO	TKN	Chloro-phyll a	Comments
BRAYS BAYOU IMMEDIATELY DOWNSTREAM OF															
HILLCROFT STREET IN WEST HOUSTON	15853	1007B	10	12	HG	HH	RT	6	6	6					
BRAYS BAYOU IMMEDIATELY DOWNSTREAM OF															
SOUTH RICE AVENUE IN WEST HOUSTON	15854	1007B	10	12	HG	НН	RT	6	6	6					
BRAYS BAYOU IMMEDIATELY DOWNSTREAM OF															
STELLA LINK ROAD IN HOUSTON	15855	1007B	10	12	HG	НН	RT	6	6	6					
HUNTING BAYOU AT LOCKWOOD DRIVE IN															
NORTHEAST HOUSTON	15873	1007R	10	12	HG	НН	RT	6	6	6					
SIMS BAYOU IMMEDIATELY DOWNSTREAM OF															
ALMEDA ROAD IN SOUTH HOUSTON	15876	1007D	10	12	HG	НН	RT	6	6	6					
SIMS BAYOU AT MARTIN LUTHER KING JUNIOR BOULEVARD IN SOUTH HOUSTON	15877	1007D	10	12	HG	НН	RT	6	6	6	6		4		Flow from USGS gage 8075470
SIMS BAYOU AT SWALLOW STREET IN SOUTHEAST HOUSTON	15878	1007D	10	12	HG	НН	RT	6	6	6					
HALLS BAYOU AT HOMESTEAD ROAD IN NORTHEAST HOUSTON	15862	1006D	10	12	HG	НН	RT	6	6	6					
HALLS BAYOU AT HIRSCH RD IN NORTHEAST HOUSTON	15863	1006D	10	12	HG	НН	RT	6	6	6					
HALLS BAYOU AT MESA DR IN NORTHEAST HOUSTON	15864	1006D	10	12	HG	НН	RT	6	6	6					
HUNTING BAYOU AT JENSEN DRIVE IN NORTHEAST															
HOUSTON	15867	1007R	10	12	HG	НН	RT	6	6	6					
HUNTING BAYOU AT CAVALCADE ST IN NORTHEAST															
HOUSTON	15869	1007R	10	12	HG	НН	RT	6	6	6					
BRAYS BAYOU AT SOUTH WAYSIDE DRIVE 802 METERS UPSTREAM OF IH 45 IN SOUTHEAST HOUSTON	16479	1007	10	12	HG	НН	RT	6	6	6					

Site Description	Station ID	Water-body ID	Basin	Region	SE	CE	MT	Field	Conv	Bacteria	Flow	24 hr DO	TKN	Chloro-phyll a	Comments
GARNERS BAYOU IMMEDIATELY UPSTREAM OF OLD HUMBLE ROAD AT CONFLUENCE WITH RIENHARDT															
BAYOU IN NORTHEAST HOUSTON	16589	1016A	10	12	HG	НН	RT	6	6	6					
UNNAMED TRIBUTARY OF GREENS BAYOU AT MESA															
DR/E. HOUSTON-DYERSDALE ROAD IN NORTHEAST															
HOUSTON	16590	1016B	10	12	HG	НН	RT	6	6	6					
SPRING BRANCH CREEK IMMEDIATELY UPSTREAM OF															
WIRT ROAD 331 METERS DOWNSTREAM OF IH 10 IN															
WEST HOUSTON	16592	10140	10	12	HG	НН	RT	6	6	6					
COLE CREEK IMMEDIATELY UPSTREAM OF BOLIVIA															
BLVD 792 METERS UPSTREAM OF CONFLUENCE WITH															
WHITEOAK BAYOU IN NW HOUSTON	16593	1017B	10	12	HG	НН	RT	6	6	6					
BRICKHOUSE GULLY AT US 290 IN NORTHWEST															Flow via USGS
HOUSTON 2.03 KM UPSTREAM OF CONFLUENCE															gage 8074250;
WITH WHITEOAK BAYOU	16594	1017A	10	12	HG	НН	RT	6		6	6				Shallow site
UNNAMED TRIBUTARY OF WHITE OAK BAYOU AT W															
14TH IN WEST HOUSTON 516 METERS UPSTREAM OF								_	_	_					
CONFLUENCE WITH WHITE OAK BAYOU	16596	1017E	10	12	HG	НН	RT	6	6	6					
NEWMAN BRANCH / NEIMANS BAYOU AT MEMORIAL								_	_	_					
DRIVE IN WEST HOUSTON	16597	1014M	10	12	HG	НН	RT	6	6	6					
LITTLE WHITE OAK BAYOU AT WHITE OAK DRIVE IN		40404						•		_					
NORTH HOUSTON	16648	1013A	10	12	HG	НН	RT	6	6	6					
COUNTRY CLUB BAYOU/TRIBUTARY OF BRAYS BAYOU															
IMMEDIATELY UPSTREAM OF SOUTH WAYSIDE	16650	10071/	10	12	110	1111	рт	_	_	_					
DRIVE/US90A IN CENTRAL HOUSTON	16650	1007K	10	12	HG	НН	RT	6	6	6					
COUNTRY CLUB BAYOU/TRIBUTARY OF BRAYS BAYOU	16651	10071/	10	12	110	1111	рт	_	_	_					
AT HUGHES STREET IN CENTRAL HOUSTON	16651	1007K	10	12	HG	НН	RT	6	6	6					
WILLOW WATERHOLE AT MCDERMED DRIVE IN SOUTHWEST HOUSTON	16652	1007E	10	12	HG	НН	RT	6		6					Shallow site
3001HWE31 HUU31UN	10032	100/5	10	12	по	ПП	ΠI	O		O					Silalion Site

Site Description	Station ID	Water-body ID	Basin	Region	SE	CE	MT	Field	Conv	Bacteria	Flow	24 hr DO	TKN	Chloro-phyll a	Comments
KUHLMAN GULLY/TRIBUTARY OF BRAYS BAYOU AT															
BROCK STREET 311 METERS UPSTREAM OF WHEELER															
STREET IN SOUTHEAST CENTRAL HOUSTON	16653	1007G	10	12	HG	НН	RT	6	6	6					
UNNAMED TRIBUTARY OF BRAYS BAYOU AT															
DUMFRIES DRIVE IN SOUTH WEST HOUSTON	16654	1007L	10	12	HG	НН	RT	6	6	6					
UNNAMED TRIBUTARY OF SIMS BAYOU AT DULCIMER															
STREET IN SOUTH HOUSTON	16655	1007N	10	12	HG	HH	RT	6	6	6					
SIMS BAYOU SOUTH BRANCH AT TIFFANY DRIVE IN															
SOUTH HOUSTON	16656	1007A	10	12	HG	HH	RT	6		6					Shallow site
UNNAMED TRIBUTARY OF HUNTING BAYOU															
IMMEDIATELY UPSTREAM OF JOHN RALSTON ROAD															
IN EAST HOUSTON	16657	1007M	10	12	HG	НН	RT	6		6					Shallow site
PLUM CREEK/TRIBUTARY OF SIMS BAYOU AT OLD															
GALVESTON ROAD IN SOUTHEAST HOUSTON	16658	1007I	10	12	HG	HH	RT	6	6	6					
PINE GULLY/TRIBUTARY OF SIMS BAYOU AT OLD															
GALVESTON ROAD IN SOUTHEAST HOUSTON	16659	1007H	10	12	HG	HH	RT	6	6	6					
BERRY BAYOU/TRIBUTARY OF SIMS BAYOU															
IMMEDIATELY UPSTREAM OF AHRENS DRIVE IN															
SOUTH EAST HOUSTON	16660	1007	10	12	HG	HH	RT	6	6	6					
BERRY BAYOU IMMEDIATELY UPSTREAM OF SOUTH															
RICHEY STREET IN SOUTH EAST HOUSTON	16661	1007F	10	12	HG	HH	RT	6	6	6					
BIG GULCH AT WALLISVILLE ROAD IN EAST HOUSTON	16662	1006F	10	12	HG	НН	RT	6		6					Shallow site
SPRING GULLY AT WEST TERMINUS OF															
BARNESWORTH DRIVE IN NORTHEAST HOUSTON	16663	1006H	10	12	HG	НН	RT	6	6	6			4		
GOODYEAR CREEK TIDAL IMMEDIATELY UPSTREAM															
OF IH 10 IN EAST HOUSTON	16664	1006	10	12	HG	НН	RT	6	6	6					
UNNAMED TRIBUTARY OF HALLS BAYOU															
IMMEDIATELY DOWNSTREAM OF LANGLEY ROAD IN															
NORTH HOUSTON	16665	1006J	10	12	HG	НН	RT	6	6	6					

Site Description	Station ID	Water-body ID	Basin	Region	SE	CE	MT	Field	Conv	Bacteria	Flow	24 hr DO	TKN	Chloro-phyll a	Comments
UNNAMED TRIBUTARY OF HALLS BAYOU AT TALTON															
STREET IN NORTH EAST HOUSTON	16666	10061	10	12	HG	НН	RT	6		6					Shallow site
UNNAMED TRIBUTARY OF HALLS BAYOU AT															
WOODLYN ROAD IN NORTH EAST HOUSTON	16667	10061	10	12	HG	НН	RT	6		6					Shallow site
UNNAMED TRIB OF BUFFALO BAYOU NEAR															
GLENWOOD CEMETARY ST 120 METERS SOUTH AND															
110 METERS WEST OF INTERSECTION OF LUBBOCK ST															
AND WEST SAWYER ST IN CENTRAL HOUSTON	16675	1013C	10	12	HG	НН	RT	6	6	6					
UNNAMED TRIBUTARY OF GREENS BAYOU AT SMITH															
RD IN NORTHEAST HOUSTON	16676	1016D	10	12	HG	НН	RT	6	6	6					
SPRING GULLY AT SPRING CREEK OAKS DRIVE IN															
TOMBALL	17481	1009D	10	12	HG	НН	RT	6	6	6					
LANGHAM CREEK AT SH 6 IN NORTHWEST HOUSTON	17482	1014E	10	12	HG	HH	RT	6	6	6	6				
BEAR CREEK AT OLD GREENHOUSE ROAD WEST OF															
HOUSTON	17484	1014A	10	12	HG	HH	RT	6	6	6					
UNNAMED TRIBUTARY OF HORSEPEN BAYOU TIDAL															
AT PENN HILLS	17485	1113C	11	12	HG	НН	RT	6	6	6					
BIG ISLAND SLOUGH AT HILLRIDGE ROAD IN															
SOUTHEAST HOUSTON	17486	1113E	11	12	HG	НН	RT	6	6	6					
WILLOW SPRING AT BANDRIDGE ROAD IN															
SOUTHEAST HOUSTON	17487	1113D	11	12	HG	HH	RT	6		6					Shallow site
SPRING CREEK IMMEDIATELY DOWNSTREAM OF															
KUYKENDAHL ROAD NORTHEAST OF HOUSTON	17489	1008	10	12	HG	НН	RT	6	6	6			4		
HALLS BAYOU AT AIRLINE ROAD IN NORTH HOUSTON	17490	1006D	10	12	HG	НН	RT	6	6	6					
HALLS BAYOU AT DEER TRAIL DRIVE IN NORTH HOUSTON	17491	1006D	10	12	HG	НН	RT	6	6	6	6				Flow from USGS gage 8076200
BUFFALO BAYOU AT SOUTH MASON ROAD WEST OF HOUSTON	17492	1014B	10	12	HG	НН	RT	6	6	6					

Site Description	Station ID	Water-body ID	Basin	Region	SE	CE	MT	Field	Conv	Bacteria	Flow	24 hr DO	TKN	Chloro-phyll a	Comments
MASON CREEK 151 METERS DOWNSTREAM OF PARK															
PINE DRIVE WEST OF HOUSTON	17494	1014L	10	12	HG	HH	RT	6	6	6					
GREENS BAYOU IMMEDIATELY UPSTREAM OF MILLS															
ROAD WEST OF HOUSTON	17495	1016	10	12	HG	НН	RT	6	6	6					
FAULKEY GULLY OF CYPRESS CREEK 105 METERS															
DOWNSTREAM OF LAKEWOOD FOREST DRIVE															
NORTHWEST OF HOUSTON	17496	1009C	10	12	HG	НН	RT	6	6	6					
SIMS BAYOU UPSTREAM TIDAL AT SOUTH POST OAK															
ROAD IN SOUTHWEST HOUSTON	17976	1007D	10	12	HG	НН	RT	6	6	6					
UNNAMED TRIBUTARY OF BUFFALO BAYOU IMMEDIATELY DOWNSTREAM OF EMILE ST ON NORTH BANK 120 M SOUTH OF CLINTON DRIVE IN CENTRAL HOUSTON	17977	10070	10	12	HG	НН	RT	6	6	6					
UNNAMED TRIBUTARY OF HUNTING BAYOU AT	1/9//	10070	10	12	по	пп	ΝI	U	U	U					
MINDEN STREET APPROXIMATELY 0.3 KM EAST OF LOCKWOOD AND S OF N 610 LOOP EAST	18689	1007V	10	12	HG	НН	RT	6		6					Shallow site
BINTLIFF DITCH TRIBUTARY OF BRAYS BAYOU UNDER CENTER OF BISSONNET ST BRIDGE 317 M NE OF															
BISSONNET AT FONDREN RD IN SW HOUSTON	18690	1007T	10	12	HG	НН	RT	6		6					Shallow site
MIMOSA DITCH TRIBUTARY OF BRAYS BAYOU AT															
NEWCASTLE DR IN SOUTHWEST HOUSTON	18691	1007U	10	12	HG	НН	RT	6		6					Shallow site
POOR FARM DITCH TRIBUTARY OF BRAYS BAYOU AT															
EASTBOUND NORTH BRAESWOOD BLVD APPROX 200															
M E OF BUFFALO SPEEDWAY IN SW HOUSTON	18692	1007S	10	12	HG	НН	RT	6		6					Shallow site
KEEGANS BAYOU AT SYNOTT ROAD 1.1 KM SOUTH OF															
THE INTERSECTION OF SYNOTT ROAD AND BISSONET															
STREET IN SOUTHWEST HOUSTON	20211	1007C	10	12	HG	НН	RT	6	6	6					

Site Description	Station ID	Water-body ID	Basin	Region	SE	CE	МТ	Field	Conv	Bacteria	Flow	24 hr DO	TKN	Chloro-phyll a	Comments
BUFFALO BAYOU NORTH SHORE IMMEDIATELY															
UNDERNEATH THE SOUTHBOUND FEEDER ROAD															
BRIDGE OF IH 610 WEST IN HOUSTON	20212	1014	10	12	HG	НН	RT	6	6	6					
WILLOW CREEK AT TUWA ROAD APPROXIMATELY															
859 METERS DOWNSTREAM OF FM 2920 ROAD IN															
NORTHERN HARRIS COUNTY	20730	1008H	10	12	HG	HH	RT	6	6	6					
SIMS BAYOU AT GALVESTON ROAD IN HOUSTON	20736	1007	10	12	HG	НН	RT	6	6	6					
GREENS BAYOU AT WALLISVILLE ROAD APPROX 150															
METERS NORTHEAST OF THE INTERSECTION OF															
DATTNER ROAD AND WALLISVILLE ROAD IN															
HOUSTON	21008	1006	10	12	HG	HH	RT	6	6	6					
HARRIS COUNTY FLOOD CONTROL DISTRICT CHANNEL															
D138 / CHIMNEY DITCH IMMEDIATELY UPSTREAM															
OF CAVERSHAM DRIVE BETWEEN THE NORTHBOUND															
AND SOUTHBOUND SECTIONS OF CHIMNEY ROCK															
ROAD IN HOUSTON	21180	1007W	10	12	HG	НН	RT	6	6	6					
SOUTH MAYDE CREEK AT SOUTH PARK VIEW DRIVE															
WEST OF HOUSTON	21813	1014H	10	12	HG	НН	RT	6	6	6					
UNNAMED TRIBUTARY OF GREENS BAYOU AT ALDINE															
WESTFIELD RD	22090	1016C	10	12	HG	НН	RT	6	6	6					
UNNAMED TRIBUTARY OF WHITE OAK BAYOU 18															
METERS SOUTH AND 18 METERS WEST OF HELBERG															
RD DEAD END	22094	1017D	10	12	HG	НН	RT	6	6	6					
TURKEY CREEK AT CLAY ROAD IN NORTHWEST															
HOUSTON	22169	1014K	10	12	HG	НН	RT	6	6	6			4		
															REPLACED site
CYPRESS CREEK AT FRY ROAD 3.3 KM UPSTREAM OF															11333 in FY23
US 290/NORTHWEST FWY	22393	1009	10	12	HG	НН	RT	6	6	6	6		4		due to safety

Site Description	Station ID	Water-body ID	Basin	Region	SE	CE	MT	Field	Conv	Bacteria	Flow	24 hr DO	TKN	Chloro-phyll a	Comments
BUFFALO BAYOU TIDAL AT CONGRESS ST BRIDGE IN															REPLACED site
HOUSTON	22396	1013	10	12	HG	НН	RT	6	6	6	6				11347 in FY23
CRYSTAL CREEK AT FM 1314	11181	1004D	10	12	HG	HW	RT	6	6	6			4		
LUCE BAYOU/SAN JACINTO RIVER EAST FORK AT															
HUFFMAN-NEW CANEY ROAD	11187	1002B	10	12	HG	HW	RT	6	6	6					
LAKE HOUSTON NORTH SIDE OF MISSOURI PACIFIC RAILROAD BRIDGE 137 METERS SOUTH AND 1.36 KM WEST OF INTERSECTION OF PINO LN AND SUNOCO RD	11208	1002	10	12	HG	WH	RT	12	12	12			4	4	
LAKE HOUSTON AT FM 1960 WEST END PASS BRIDGE 269 M N AND 731 M E OF INTERSECTION OF ATASCOCITA SHORES AND FM 1960/CITY HO SITE 9	11211	1002	10	12	HG	HW	RT	12	12	12					
LAKE HOUSTON AT FM 1960 EAST END PASS BRIDGE 235 M S AND 950 M WEST OF INTERSECTION OF FM 1960 AND FAIRLAKE LANE/CITY HO SITE 13	11212	1002	10	12	HG	НW	RT	12	12	12					
EAST FORK SAN JACINTO RIVER AT FM 1485	11235	1003	10	12	HG	HW	RT	6	6	6	6		4		Flow from USGS gage 8070200
EAST FORK SAN JACINTO RIVER IMMEDIATELY UPSTREAM OF TX-105 BUSINESS ROUTE / W SOUTHLINE STREET WEST OF CLEVELAND	11238	1003	10	12	HG	HW	RT	6	6	6	6		4		Flow from USGS gage 8070000
WEST FORK SAN JACINTO RIVER IMMEDIATELY UPSTREAM OF SH 242	11243	1004	10	12	HG	HW	RT	6	6	6			4		
WEST FORK SAN JACINTO RIVER IMMEDIATELY DOWNSTREAM OF SH 105 NW OF CONROE CAMS772	11251	1004	10	12	HG	HW	RT	6	6	6	6				Flow from USGS gage 8067650
SPRING CREEK BRIDGE AT IH 45 20 MILES NORTH OF HOUSTON	11313	1008	10	12	HG	HW	RT	6	6	6	6		4		Flow from USGS gage 8068500

Site Description	Station ID	Water-body ID	Basin	Region	SE	CE	МТ	Field	Conv	Bacteria	Flow	24 hr DO	TKN	Chloro-phyll a	Comments
CYPRESS CREEK BRIDGE ON IH 45 15 MI NORTH OF															Flow from USGS gage
HOUSTON	11328	1009	10	12	HG	HW	RT	6	6	6	6		4		8069000
CANEY CREEK IMMEDIATELY DOWNSTREAM OF FM	11020	1003									-		•		
1485	11334	1010	10	12	HG	HW	RT	6	6	6					
															Flow from
															USGS gage
PEACH CREEK BRIDGE AT FM 2090 IN SPLENDORA	11337	1011	10	12	HG	HW	RT	6	6	6	6		4		08071000
LAKE HOUSTON 90 M S AND 349 M W OF															
INTERSECTION OF MAGNOLIA PT DR AND DIAMOND															
WAY CANEY CREEK ARM IN HOUSTON	16623	1002	10	12	HG	HW	RT	12	12	12					
PEACH CREEK IMMEDIATELY UPSTREAM OF OLD HWY															
105	16625	1011	10	12	HG	HW	RT	6	6	6					
STEWARTS CREEK 175 METERS DOWNSTREAM OF SH															
LOOP 336 SOUTHEAST OF CONROE	16626	1004E	10	12	HG	HW	RT	6	6	6			4		
LK HOUSTON W OF LK SHADOWS SUBDIVISION MID															
LAKE NW OF HOUSTON 2.09 KM N AND 1.38 KM E OF															
INTERSECT OF LK HOUSTON PKWY AND DITE CAYLIN	16668	1002	10	12	HG	HW	RT	12	12	12					
LAKE HOUSTON IN THE WEST FORK SAN JACINTO															
RIVER CHANNEL 270 M EAST AND 60 M NORTH OF															
MISTY COVE AT ATASCOCITA PLACE DR	18667	1002	10	12	HG	HW	RT	12	12	12			4	4	
LAKE HOUSTON/LUCE BAYOU 123 M NORTH AND 188															
M WEST OF LAKEWATER DR AT WATERWOOD DR IN															
WATER WONDERLAND SUBDIVISION IN HARRIS	40676	1000	4.0	42		1.15.47	ОТ	43	43	4.2					
COUNTY	18670	1002	10	12	HG	HW	RT	12	12	12			4	4	
LAKE HOUSTON WEST FORK SAN JACINTO RIVER ARM															
UNDER POWER LINES 567 METERS EAST AND 538	20702	1002	10	12	ПС	LIVAZ	рт	12	12	12					
METERS NORTH FROM THE INTERSECTION OF	20782	1002	10	12	HG	HW	RT	12	12	12					

Site Description	Station ID	Nater-body ID	sin	Region				p	۷۲	Bacteria	W	hr DO	7	Chloro-phyll a	Comments
	Sta	Wa	Basin	Reg	SE	CE	MT	Field	Conv	Вас	Flow	24	TKN	chl	
BELLEAU WOOD DRIVE AND SOUTHSHORE DRIVE IN															
HOUSTON															
CANEY CREEK AT MILLMAC ROAD NORTHEAST OF															
CUT AND SHOOT	21465	1010	10	12	HG	HW	RT	6	6	6			4		
LUCE BAYOU 224 METERS NORTHWEST OF END OF															
CRY BABY LANE IN HUFFMAN	22224	1002	10	12	HG	HW	RT	12	12	12					ADDED in FY21
LAKE CONROE AT DAM MID CHANNEL 85 M OUT															
FROM MIDDLE TAINTER GATE 922 M N AND 426 M E															
OF INTERSECTION OF DAM SITE RD AND SH 105	11342	1012	10	12	HG	SJ	RT	12	12	12			4	4	
LAKE CONROE AT FM 1375 IN THE MAIN CHANNEL															
4TH PILING FROM THE EAST 541 M SOUTH AND 1.40															
KM W OF INTERSECTION OF KAGLE RD AND FM 1375															
USGS SITE GC	11344	1012	10	12	HG	SJ	RT	12	12	12			4	4	
PANTHER BRANCH 295 METERS DOWNSTREAM OF															
SAWDUST ROAD IN THE WOODLANDS	16422	1008C	10	12	HG	SJ	RT	12	4	4					
LAKE WOODLANDS AT WESTERN REACH 110 METERS															
NORTH AND 100 METERS EAST OF INTERSECTION OF															
MEADOW COVE DR AND PLEASURE COVE DR IN THE															
WOODLANDS	16481	1008F	10	12	HG	SJ	RT	12	4	4					
LAKE WOODLANDS AT SOUTH END 23 METERS															
NORTH AND 50 METERS EAST OF THE WEST EDGE OF															
DAM IN THE WOODLANDS	16482	1008F	10	12	HG	SJ	RT	12	4	4			4	4	
LAKE WOODLANDS AT MID POINT 130 METERS															
NORTH AND 30 METERS EAST OF THE NORTHERN															
INTERSECTION OF E SHORE DR AND CAPE HARBOR PL															
IN THE WOODLANDS	16483	1008F	10	12	HG	SJ	RT	12	4	4					
LAKE WOODLANDS AT NORTH END 111 METERS															
DOWNSTREAM OF RESEARCH FOREST DRIVE IN THE															
WOODLANDS	16484	1008F	10	12	HG	SJ	RT	12	4	4					

Site Description	Station ID	Water-body ID	Basin	Region	SE	CE	MT	Field	Conv	Bacteria	Flow	24 hr DO	TKN	Chloro-phyll a	Comments
LOWER PANTHER BRANCH AT FOOTBRIDGE 265 M UPSTREAM OF SAWDUST RD APPROX 200 M UPSTREAM OF PERMIT WQ0011401-001 LOCATED AT 2436 SAWDUST ROAD	16627	1008C	10	12	HG	SJ	RT	12	4	4					
UPPER PANTHER BRANCH APPROX 80 M UPSTREAM OF PERMIT WQ0012597-001 LOCATED AT 5402 RESEARCH FOREST DR	16629	1008B	10	12	HG	SJ	RT	12	4	4					
UPPER PANTHER BRANCH APPROX 170 METERS DOWNSTREAM OF PERMIT WQ0012597-001 LOCATED AT 5402 RESEARCH FOREST DR	16630	1008B	10	12	HG	SJ	RT	12	4	4					
BEAR BRANCH 20 METERS DOWNSTREAM OF RESEARCH FOREST DRIVE	16631	1008E	10	12	HG	SJ	RT	12	4	4	12				Flow from USGS gage 8068390
LAKE CONROE AT APRIL POINT MID CHANNEL 559 M N AND 586 M E OF INTERSECTION OF APRIL POINT PLACE AND APRIL HILL	16638	1012	10	12	HG	SJ	RT	12	12	12					
LAKE CONROE AT SOUTH END OF LAKE ON EAST SIDE 201 METERS SOUTH AND 732 METERS WEST OF INTERSECTION OF S VALLEY DRIVE AND CREST DRIVE	16639	1012	10	12	HG	SJ	RT	12	12	12			4	4	
LAKE CONROE S OF BENTWATER ISLAND WEST COVE S OF FM 1097 BRIDGE 769 M N AND 89 M E OF INTERSECTION OF WATERFRONT AND SPRINGTIME DR	16640	1012	10	12	HG	SJ	RT	12	12	12					
LAKE CONROE AT AQUARIUS POINT MID CHANNEL N OF FM 830 BOAT RAMP 437 M N AND 924 M W OF INTERSECT OF FM 830 AND LAKEVIEW MANOR DR	16641	1012	10	12	HG	SJ	RT	12	12	12					
LAKE CONROE AT LAKE MID POINT MID CHANNEL AT FM 1097 BRIDGE 57 M S AND 520 M W OF INTERSECTION OF FM 1097 AND BLUEBERRY HILL	16642	1012	10	12	HG	SJ	RT	12	12	12			4	4	

Site Description	Station ID	Water-body ID	Basin	Region	SE	CE	MT	Field	Conv	Bacteria	Flow	24 hr DO	TKN	Chloro-phyll a	Comments
LAKE CONROE AT HUNTERS POINT CANEY CREEK ARM															
E OF SCOTTS RIDGE BOAT RAMP 640 M N AND 558 M															
E OF INTERSECT OF TEEL RD AND HUNTERS TRL	16643	1012	10	12	HG	SJ	RT	12	12	12					
LAKE CONROE AT PARADISE POINT MID CHANNEL															
396 METERS S AND 309 M WEST INTERSECTION OF															
PARADISE VIEW DRIVE AND PARADISE POINT DRIVE	16644	1012	10	12	HG	SJ	RT	12	12	12					
LAKE CONROE AT MOUTH OF SANDY BRANCH COVE															
2.63 KM EAST OF INTERSECTION OF HARDY SMITH															
ROAD AND F S 218 A	16645	1012	10	12	HG	SJ	RT	12	12	12					
EAST FORK SAN JACINTO RIVER AT FM 2090 IN															
LIBERTY COUNTY	11236	1003	10	12	HG	TF	RT	4	4	4	4				
EAST FORK SAN JACINTO RIVER IMMEDIATELY															
DOWNSTREAM OF FM 945 5.6 MILES NORTH OF															
CLEVELAND	11237	1003	10	10	HG	TF	RT	4	4	4	4				
EAST FORK SAN JACINTO RIVER IMMEDIATELY															
DOWNSTREAM OF US 59 AT RED GULLY	14242	1003	10	12	HG	TF	RT	4	4	4	4				
TARKINGTON BAYOU AT SH 105/SH 321 SOUTHEAST															NEW for TRIES
OF CLEVELAND	20466	1002A	10	12	HG	TF	RT	4	4	4	4		4		in FY24.
WINTERS BAYOU AT FM 2929 / FOUR NOTCH ROAD															
4.8 KILOMETERS SOUTH OF PHELPS IN WALKER															
COUNTY	21933	1003A	10	12	HG	TF	RT	4	4	4	4				
BOSWELL CREEK AT FOUR NOTCH ROAD / BOSWELL															
ROAD 13 KILOMETERS NORTHEAST OF NEW															
WAVERLY IN WALKER COUNTY	21934	1003C	10	12	HG	TF	RT	4	4	4	4				
WINTERS BAYOU AT FM 2693 IN SAN JACINTO															
COUNTY	21935	1003A	10	10	HG	TF	RT	4	4	4	4				
WINTERS BAYOU AT DABNEY BOTTOM RD IN SAN															
JACINTO COUNTY	21937	1003A	10	10	HG	TF	RT	4	4	4	4				

Site Description	Station ID	Water-body ID	Basin	Region	SE	CE	MT	Field	Conv	Bacteria	Flow	24 hr DO	TKN	Chloro-phyll a	Comments
NEBLETTS CREEK AT FM 1725 IN SAN JACINTO															
COUNTY	21938	1003B	10	10	HG	TF	RT	4	4	4	4				
EAST FORK SAN JACINTO RIVER AT NORTH BUTCH															
ARTHUR ROAD IN SAN JACINTO COUNTY	21939	1003	10	10	HG	TF	RT	4	4	4	4				
TARKINGTON BAYOU AT FM 787 APPROXIMATELY 1.1															NEW for TRIES
KM EAST OF CAMPBELL ST IN CLEVELAND TX	22431	1002A	10	12	HG	TF	RT	4	4	4	4		4		in FY24.
CEDAR BAYOU TIDAL MID CHANNEL 45 M															
DOWNSTREAM OF SH 146 NORTHEAST OF BAYTOWN	11115	0901	9	12	HG	UI	RT	4	4	4					
CEDAR BAYOU ABOVE TIDAL 30 M DOWNSTREAM OF															
FM 1942 AT EAST BANK	11118	0902	9	12	HG	UI	RT	4	4	4	4				
CEDAR BAYOU ABOVE TIDAL 45 M DOWNSTREAM OF															
FM 1960 NORTHEAST OF HUFFMAN	11123	0902	9	12	HG	UI	RT	4	4	4	4		4		
MOSES BAYOU AT NORTHBOUND SH 146 BRIDGE AT															
MID-BRIDGE NORTH OF LA MARQUE	11400	2431A	24	12	HG	UI	RT	4	4	4					
HIGHLAND BAYOU AT FAIRWOOD ROAD IN LA															
MARQUE IN GALVESTON COUNTY	11415	2424A	24	12	HG	UI	RT	4	4	4					
MUSTANG BAYOU AT FM 2917 SOUTH OF ALVIN	11423	2432A	24	12	HG	UI	RT	4	4	4	4		4		
CEDAR CREEK AT FM 517 W OF DICKINSON	11434	1103E	11	12	HG	UI	RT	4	4	4	4				
GUM BAYOU AT FM 517 E OF DICKINSON	11436	1103D	11	12	HG	UI	RT	4	4	4			4		
DICKINSON BAYOU TIDAL AT SH 146 BRIDGE EAST OF															
DICKINSON	11455	1103	11	12	HG	UI	RT	4	4	4			4		
DICKINSON BAYOU TIDAL AT IH 45	11462	1103	11	12	HG	UI	RT	4	4	4					
CHOCOLATE BAYOU TIDAL FM 2004 BRIDGE SOUTH															
OF ALVIN	11478	1107	11	12	HG	UI	RT	4	4	4			4	4	
OYSTER CREEK TIDAL AT THAT-WAY DRIVE 0.5 MILES															
BELOW FM 2004	11486	1109	11	12	HG	UI	RT	4	4	4			4		

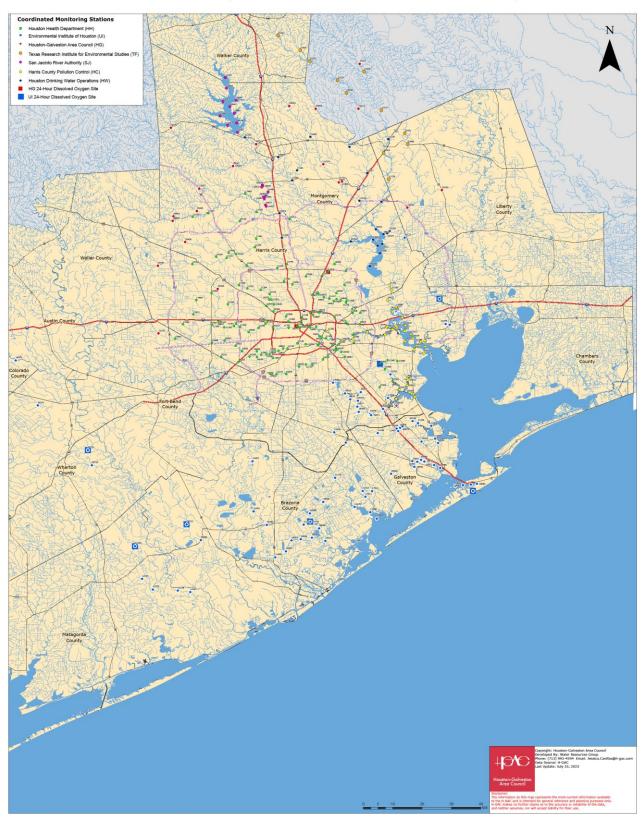
Site Description	Station ID	Water-body ID	Basin	Region	SE	CE	MT	Field	Conv	Bacteria	Flow	24 hr DO	TKN	Chloro-phyll a	Comments
															Conv & Bact
OYSTER CREEK IMMED. DOWNSTREAM OF SH 35															added in second half of
WEST OF ANGLETON	11490	1110	11	12	HG	UI	RT	4	4	4	4		4		FY2020
WEST OF ANGLETON	11130	1110				- 01	1	'	<u>'</u>	<u>'</u>	•		•		ADDED site to
															CRP in FY2019.
															TCEQ
															Permitting
OYSTER CREEK AT SIMS RD / BRAZORIA CR 30 WEST															requested flow
OF ANGLETON	11491	1110	11	12	HG	UI	RT	4	4	4	4		4		in FY20.
															ADDED in FY20
OVETER CREEK AT ENAMAGE MEET OF ROCHARON	44400	4440		4.2			D.T.								at request of
OYSTER CREEK AT FM 1462 WEST OF ROSHARON HARDEMAN SLOUGH IMMEDIATELY DOWNSTREAM	11493	1110	11	12	HG	UI	RT	4	4	4	4		4		TCEQ
OF ALLENHURST RD NE OF FM 2540 NEAR															
ALLENHURST COMMUNITY	12135	1305A	13	12	HG	UI	RT	4	4	4	4				
LINNVILLE BAYOU 35 M DOWNSTREAM OF SIMS	12133	1303/1	13				1.1	'	<u>'</u>	'	•				
ROAD / CR 153 APPROXIMATELY 5.20 KM UPSTREAM															ADDED IN
OF MOUTH	12138	1304A	13	12		UI	RT	4	4	4	4		4		FY2024
CANEY CREEK IMMEDIATELY UPSTREAM OF															
CONCRETE BRIDGE 210 M DOWNSTREAM OF															
LINVILLE BAYOU CONFLUENCE AND ADJACENT TO FM															
521	12151	1304	13	12	HG	UI	RT	4	4	4					
CANEY CREEK AT SERGEANT JOE PARKS JR MEMORIAL															
HIGHWAY / FM 457 IN MATAGORDA COUNTY	12153	1305	13	12	HG	UI	RT	4	4	4	4		4		
CANEY CREEK ABOVE TIDAL 35 M DOWNSTREAM OF															
ASHWOOD RD/FM 3156 1.24 KM SOUTHWEST OF	12455	1205	12	12				_			_				ADDED IN
MATAGORDA CR1728 ASHWOOD	12155	1305	13	12	HG	UI	RT	4	4	4	4		4		FY2024

Site Description	Station ID	Water-body ID	Basin	Region	SE	CE	MT	Field	Conv	Bacteria	Flow	24 hr DO	TKN	Chloro-phyll a	Comments
WEST BAY OFFAT BAYOU MID BAYOU OPPOSITE LAKE															
MADELINE CANAL	13322	2424D	24	12	HG	UI	RT	4	4	4			4	4	
WEST BAY AT RANGE MARKER D BETWEEN SOUTH															
DEER ISLAND AND TEICHMAN POINT	14622	2424	24	12	HG	UI	RT	4	4	4			4	4	
OFFATTS BAYOU OFF CM 18	14645	2424D	24	12	HG	UI	RT	4	4	4					
HIGHLAND BAYOU TIDAL AT FM 519 335 METERS															
NORTH OF SH 6 IN CITY OF HITCHCOCK IN															
GALVESTON COUNTY	15941	2424A	24	12	HG	UI	RT	4	4	4			4		
SAN BERNARD RIVER IMMEDIATELY DOWNSTREAM															
OF FM 3013 ON THE COLORADO-AUSTIN COUNTY															
LINE APPROXIMATELY 15KM SW OF SEALY	16370	1302	13	12	HG	UI	RT	4	4	4	4				
GUM TREE BRANCH AT WHARTON CR 242															ADDED IN
APPROXIMATELY 5.9 KM SE OF LISSIE	16371	1302A	13	12	HG	UI	RT	4	4	4	4				FY2024
GEISLER BAYOU AT FM517 BRIDGE 0.19MI															
UPSTREAM OF DICKINSON BAYOU IN DICKINSON	16470	1103C	11	12	HG	UI	RT	4	4	4					
BENSONS BAYOU AT FM 517 / PINE DR IN DICKINSON	16471	1103A	11	12	HG	UI	RT	4	4	4					
MARYS CREEK AT MARYS CROSSING IN NORTH															
FRIENDSWOOD	16473	1102B	11	12	HG	UI	RT	4	4	4	4		4		
ROBINSONS BAYOU AT FM270 IN LEAGUE CITY	16475	1101D	11	12	HG	UI	RT	4	4	4					
HIGHLAND BAYOU 80 M NORTHEAST OF SH 6 BRIDGE															
CENTERPOINT IN BAYOU VISTA WEST OF IH 45 IN															
GALVESTON COUNTY	16488	2424A	24	12	HG	UI	RT	4	4	4			4	4	
MARCHAND BAYOU TIDAL AT FM519 IN HITCHCOCK	16490	2424C	24	12	HG	UI	RT	4	4	4					
HIGHLAND BAYOU AT FM 2004 IN HITCHCOCK IN															
GALVESTON COUNTY	16491	2424A	24	12	HG	UI	RT	4	4	4			4		
CHIGGER CREEK AT FM528 BRIDGE IN FRIENDSWOOD	16493	1101B	11	12	HG	UI	RT	4	4	4	4				
HIGHLAND BAYOU AT END OF BAYOU LANE															
FREDDIESVILLE	16562	2424A	24	12	HG	UI	RT	4	4	4					

Site Description	Station ID	Water-body ID	Basin	Region	SE	CE	MT	Field	Conv	Bacteria	Flow	24 hr DO	TKN	Chloro-phyll a	Comments
LAKE MADELINE AT CORNER OF BELUCHE DRIVE AND															
DOMINIQUE DRIVE IN GALVESTON	16564	2424B	24	12	HG	UI	RT	4	4	4			4	4	
CLEAR CREEK TIDAL AT BROOKDALE DR APPROX															
0.1MI DOWNSTREAM OF GRISSOM RD IN															
COUNTRYSIDE PARK IN CANOE LAUNCHING AREA IN															
LEAGUE CITY	16576	1101	11	12	HG	UI	RT	4	4	4			4		
MAGNOLIA CREEK AT W BAY AREA BLVD LEAGUE CITY															
APPROX 250 M UPSTREAM OF WWTP PERMIT															
WQ0010568-003	16611	1101A	11	12	HG	UI	RT	4	4	4	4				
COWART CREEK 9 METERS UPSTREAM FROM															
CASTLEWOOD DRIVE BRIDGE IN FRIENDSWOOD	16677	1102A	11	12	HG	UI	RT	4	4	4	4				
HICKORY SLOUGH AT ROBINSON DRIVE IN PEARLAND	17068	1102C	11	12	HG	UI	RT	4	4	4	4				
CHOCOLATE BAY 200 M NORTHWEST OF HORSE															
GROVE POINT AND 5.1 KM DOWNSTREAM OF FM															
2004	17086	2432	24	12	HG	UI	RT	4	4	4			4	4	
MOSES BAYOU AT SH 3 IN TEXAS CITY	17910	2431E	24	12	HG	UI	RT	4	4	4	4				
NEW BAYOU AT FM 2004 S/SW OF HITCHCOCK	17911	2432E	24	12	HG	UI	RT	4	4	4					
PERSIMMON BAYOU AT FM 2004 S/SW OF															
HITCHCOCK	17913	2432D	24	12	HG	UI	RT	4	4	4					
COW BAYOU AT NASA ROAD 1 IN WEBSTER 100 M															
EAST OF FM 270/EL CAMINO REAL	17928	1101C	11	12	HG	UI	RT	4	4	4					
AUSTIN BAYOU AT FM 2004 APPROXIMATELY 4 MILES															
SOUTHEAST OF ANGLETON TEXAS IN BRAZORIA															
COUNTY	18048	1105B	11	12	HG	UI	RT	4	4	4			4	4	
BASTROP BAYOU OFF BAYOU WOOD DR DUE EAST OF															
BRAZORIA CR 201 AT BASTROP BAYOU DR APPROX															
1.1 KM UPSTREAM OF SH 288B IN RICHWOOD															
VILLAGE	18502	1105	11	12	HG	UI	RT	4	4	4					

Site Description	Station ID	Water-body ID	Basin	Region	SE	CE	MT	Field	Conv	Bacteria	Flow	24 hr DO	TKN	Chloro-phyll a	Comments
BASTROP BAYOU TIDAL APPROXIMATELY 15 M OFF															
NORTH BANK AND 1.55 KM UPSTREAM OF FM 2004															
IN RICHWOOD VILLAGE	18503	1105	11	12	HG	UI	RT	4	4	4					
BASTROP BAYOU TIDAL MID CHANNEL AT NORTH															
END OF BASTROP BEACH ROAD 350 M															
DOWNSTREAM OF FM 523 SE OF ANGLETON	18504	1105	11	12	HG	UI	RT	4	4	4					
BASTROP BAYOU TIDAL 38 M NORTH OF N END OF															
COMPASS DR/BRAZORIA CR 504 APPROXIMATELY 4.4															
KM DOWNSTREAM OF FM 523 SE OF ANGLETON	18505	1105	11	12	HG	UI	RT	4	4	4			4	4	
AUSTIN BAYOU IMMEDIATELY UPSTREAM OF															
DANBURY-ANGLETON ROAD/BRAZORIA CR 210 EAST															
OF DANBURY	18506	1105C	11	12	HG	UI	RT	4	4	4	4		4		
FLORES BAYOU IMMEDIATELY UPSTREAM OF															
DANBURY-ANGLETON ROAD/BRAZORIA CR 210 EAST															
OF ANGLETON	18508	1105A	11	12	HG	UI	RT	4	4	4	4				
MUSTANG BAYOU IMMEDIATELY UPSTREAM OF EAST															
SOUTH STREET 85 METERS WEST OF SOUTHBOUND															
SH 35 IN ALVIN USGS ID 8077890	18554	2432A	24	12	HG	UI	RT	4	4	4	4				
UNNAMED TRIBUTARY OF CLEAR CREEK TIDAL IN															
FOREST PARK CEMETERY IMMEDIATELY UPSTREAM															
OF S FEEDER RD OF I 45/GULF FWY S OF NASA RD 1															
IN WEBSTER	18591	1101F	11	12	HG	UI	RT	4	4	4	4				
UNNAMED TRIBUTARY OF MOSES LAKE AT STATE															
LOOP 197/25TH AVE NORTH 432 M EAST OF															
NORTHBOUND SH 146 IN TEXAS CITY	18592	2431C	24	12	HG	UI	RT	4	4	4					
HIGHLAND BAYOU DIVERSION CANAL MID CHANNEL															
AT SECOND STREET BRIDGE 467 M UPSTREAM OF															
PRICE ROAD WWTP RELEASE IN HITCHCOCK	18593	2424G	24	12	HG	UI	RT	4	4	4					

Site Description	Station ID	Water-body ID	Basin	Region	SE	CE	MT	Field	Conv	Bacteria	Flow	24 hr DO	TKN	Chloro-phyll a	Comments
MARYS CREEK BYPASS AT EAST BROADWAY ST/FM															
518 WEST OF SUNSET MEADOWS DR IN PEARLAND	18639	1102F	11	12	HG	UI	RT	4	4	4	4				
WILLOW BAYOU AT BAKER ST 404 M UPSTREAM OF															
FM 2004 SOUTH OF SANTA FE IN GALVESTON															
COUNTY	18668	2432B	24	12	HG	UI	RT	4	4	4	4				
ENGLISH BAYOU MID BAYOU 250 M EAST AND 83 M															
SOUTH OF 61ST ST BRIDGE CENTERPOINT IN															
GALVESTON	18695	2424E	24	12	HG	UI	RT	4	4	4			4	4	
CLEAR CREEK ABOVE TIDAL AT YOST ROAD TERMINUS															
IN PEARLAND IN BRAZORIA COUNTY	20010	1102	11	12	HG	UI	RT	4	4	4	4				
SAN BERNARD RIVER TIDAL AT SH 35 SOUTHWEST OF															
WEST COLUMBIA	20460	1301	13	12	HG	UI	RT	4	4	4					
WEST BERNARD CREEK AT WHARTON CR 225 EAST OF															
HUNGERFORD	20721	1302B	13	12	HG	UI	RT	4	4	4	4		4		
PEACH CREEK AT WHARTON CR 117/CHUDALLA															
ROAD/ARCHER ROAD 89 METERS SOUTH OF THE															
INTERSECTION OF WHARTON CR 117/CHUDALLA															
ROAD/ARCHER ROAD AND WHARTON CR 121/															
WHARTON CR 119/DONALDSON ROAD IN EAST OF															
WHARTON	20722	1302D	13	12	HG	UI	RT	4	4	4	4		4		
MOUND CREEK AT BRAZORIA CR 450/JACKSON															
SETTLEMENT ROAD 1.22 KILOMETERS UPSTREAM OF															
FM 1301 IN WEST OF WEST COLUMBIA	20723	1302E	13	12	HG	UI	RT	4	4	4	4		4		
BORDENS GULLY AT SPRUCE DRIVE IN DICKINSON	20724	1103B	11	12	HG	UI	RT	4	4	4	4		4		
UNNAMED TRIBUTARY OF GUM BAYOU AT OWENS															
DRIVE 1.51 KILOMETERS UPSTREAM OF CONFLUENCE															
WITH GUM BAYOU IN DICKINSON	20728	1103G	11	12	HG	UI	RT	4	4	4					


Site Description	Station ID	Water-body ID	Basin	Region	SE	CE	MT	Field	Conv	Bacteria	Flow	24 hr DO	TKN	Chloro-phyll a	Comments
CARY BAYOU IMMEDIATELY UPSTREAM OF RACCOON															ADDED in FY21 at request of
DRIVE BRIDGE IN BAYTOWN	21079	0901A	9	12	HG	UI	RT	4	4	4			4		assessor
CHOCOLATE BAYOU IMMEDIATELY UPSTREAM OF															
BRAZORIA CR 171 / MUSTANG CHOCOLATE BAYOU															
ROAD IN LIVERPOOL	21178	1107	11	12	HG	UI	RT	4	4	4					
MUSTANG BAYOU AT THE HEIGHTS-MANVEL ROAD															
/CARDINAL DRIVE BRIDGE NEAR ALVIN	21416	2432A	24	12	HG	UI	RT	4	4	4	4				
															ADDED again in
BRUSHY BAYOU AT FM 213	21734	1105E	11	12	HG	UI	RT	4	4	4	4				FY2022
UNNAMED TRIBUTARY OF BASTROP BAYOU TIDAL AT															
BRAZORIA CR 213 / SHELL ROAD 7.0 KILOMETERS	24725	44055		4.2											
EAST OF ANGLETON	21735	1105D	11	12	HG	UI	RT	4	4	4	4		4		
TURKEY CREEK AT BEAMER ROAD 1.5 KM SOUTHEAST	24025	44025		4.2						_					
OF FM 1959/DIXIE FARM ROAD IN FRIENDSWOOD	21925	1102D	11	12	HG	UI	RT	4	4	4	4				
AUSTIN BAYOU TIDAL 1.60 KILOMETERS UPSTREAM															
OF THE CONFLUENCE WITH BASTROP BAYOU TIDAL IN BRAZORIA COUNTY	22012	1105B	11	12	HG	UI	RT	4	4	4			4	4	
ARMAND BAYOU TIDAL 100 M BELOW THE	22012	11028	TT	12	по	UI	N I	4	4	4			4	4	
CONFLUENCE WITH SPRING GULLY	22187	1113	11	12	HG	UI	RT	4	4	4			4	4	

Appendix C: Station Location Maps

Station Location Maps

Maps of stations monitored by the H-GAC are provided below. The maps were generated by the H-GAC. This product is for informational purposes and may not have been prepared for or be suitable for legal, engineering, or surveying purposes. It does not represent an on-the-ground survey and represents only the approximate relative location of property boundaries. For more information concerning this map, contact the Jessica Casillas at 713-993-4594 or via email at jessica.casillas@h-gac.com.

H-GAC's FY2024 Regional Coordinated Monitoring Stations

Appendix D: Field Data Sheets

H-GAC - Ambient Monitoring Data Sheet

Date:	!	Station:	TCEQ ID:	# 20452 – Can	ey Creek @ F	ire Tower Rd.,	west of Woodl	oranch
ime (military):	Samples	Collected by:					
Total Water D sampling locat		meters			# of Days Significan	Since Last at Rainfall		
Sampling Dep	th	meters						
Water Temper	ature	*C						
Specific Conductance		µS/em						
Н	sta	ndard units						
Dissolved Oxy	gen	mg/L						
Seechi disk or tube	Observed Turbidity	Water Clarity	Water Color	Water Odor	Present Weather	Wind Intensity	Water Surface	Flow Severity
extes	1 - lose 1 - enotient 2 - metter 2 - good 3 - high 3 - fair 4 - poor		1 - becovish 2 - reddish 3 - goverish 4 - blackish 5 - clear 6 - other	1 = sewage 2 = objectemical 3 = rotes egg 4 = soulcy 5 = fisky 6 = sons 7 = other	I - chost 2 - partly cloudy 3 - stroody 4 - raining 5 - other	1 - culte 2 - slight 3 - moderate 4 - strong	1 -esha 2 -diples 3 - Wayes	5 = no flow 2 - low 3 - cornel 4 - flood 5 - high 5 - dry
Flow Method	i – gage 2 – electric 3 – mechanical 4 – weinflume 5 – Doppler		Maximum Poo		meters			
Flow Equipment	1 – M9 River Surveyor 2 – Flow Tracker		Pool Length	э Бери	meters			
	3 – OTT MF Pro		Percent Pool 0 500 meter Res		76			
Flow (Field)	cfs							
Flow (Post Processing)	cfs		Comments					
			Observation					
0.000.000.000.000	millox.	Containers		Preservatives	Analyses			Requested
esh (non-tidal) 1 x 1 L Plass 1 x 1 L Plass 1 x 1 L Plass arine (tidal) 1 x 500 mL 1 x 100 mL 1 x 1 L Plass 1		c fastic	Iced Iced, H ₃ SO ₄ Iced	CL, 804 (fr	NO3, TPO4 esh only), NO2,	NO3		
	yor SN;	1 x 100 mL S		lced nde SN:	Bacteria:	E. colt		

H-GAC - 24-Hour Dissolved Oxygen Monitoring Data Sheet

Station: TCEQ ID: # 21965 – Spring Branch downstream of Shakey Ho	ollow west of Woodbranch Village
Deployment Date:/ Time (military):	Deployed By
Deployed Sonde Serial Number/ID:	Fresh (non-tidal) Tidal
Flow (CFS)Flow Method(USGS Gage = 1, ADP	P=5) Water samples collected? Yes No
Flow Severity: (1 - no flow; 2 - low; 3 - normal; 4 - flood; 5 - high; 6 - dry)	
Retrieval Date:/ Time (military):	Retrieved By
Flow (CFS) Flow Method (USGS Gage = 1, AD	P=5) Water samples collected? Yes No
Data Check - Performed In Field At Time Of Retrieval	
Date and Time of First Sample in SeriesD	OO of First Sample
Date and Time of Last Sample in Series1	DO of Last Sample
Series <u>reviewed</u> for depths < 0.00 and complete DO sequences of ≥0.00	(add comments below)
Data Collection Check Performed By Date	Time
COMMENTS	
Sonde Data Downloaded By Date	Time
Flow Discharge Summary Reviewed and Printed by	Date
Flow Entered in Ambient Database By_ Even if NO water samples are collected, enter station ID, date, time, flow and flow methods.	
Reviewed by QAODate	e
QAO COMMENTS	

H-GAC Surface Water Quality Monitoring Program

Stream Flow (Discharge) Measurement Form

Stream:		- In			ate:
Station:				Ya	11-
Description:					21025
Time Begin:			Meter Type:		
Observers:					
Observations:					
Section Midpoint (ft) (m)	Section Depth (ft) (m) (cm)	Observational Depth**	Veloci	ty (V)	Flow (Q) (m ³ /s) (ft ³ /s)
(4/4)	(D)	(ft)(m)	At Point (ft/s)(m/s)	Average (ft/s)(m/s)	Q = (W)(D)(V)
				1	
7					307
	entros en			1	*
				1	
7.7.0					
			- Alayerate to		

Pollution Control Services Department 101 S. Richey, Suite H

Sample Data and Custody Record

d:		Type:Name								Time	_^
		Nam	ne		-		Little Little		Key Ma	ap:	
	ocation:						Outfall				
ome L	ocation Info		Collected (sar	male con	nommirad)	Field T	est Only		io Flow		
	ior(s):		Concust (sai	inpite con	-		eat Only		011011		
					Tests and	Measure	ments				
	Temperatu	ne (,C)	Diss	solved O	xygen (mg/L)		Specific Co	nductivit	y (μS)	Water Depth (me	eters
	pH (standa	erd units)	Salir	nity (ppt)				sk Trans	sparency (meter	rs)	
	7		1 D-44		Field Ober	ALL REALITY OF	311111				
_	=				nish 4-Blackish		Other				
_	=				n 4-Debris 5-St						
_	Water Odd	or 1-Sewage	e 2-Oily/Chemi	cal 3-Ro	otten Egg 4-Mus	sky 5-Fish	6-None 7	-Other		_	
	Turbidity	1-Low 2-Med	dium 3-High								
	Water Sur	face 1-Caln	n 2-Ripples 3-	Waves	4-White Caps						
				F	eld Observatio	ns-Weath	er and Othe	er			
	Present W	eather 1-Cl	ear 2-Partly Cl	loudy 3-	Cloudy 4-Rain	5-Other _					
	_										
	Wind Inten	sity 1.Calm	2-Slight 3-M	nderate	4.Strong						
	≓		2-Slight 3-Mo		_				90078/4	mbos of accords observed	- dl
	Tide Stage	1-Low 2-F	alling 3-Slack	4-Rising	g 5-High					mber of people observe	ed)
	Tide Stage	1-Low 2-F		4-Rising	g 5-High		-			mber of people observe	ed)
ix:	Tide Stage	1-Low 2-F	alling 3-Stack	4-Rising	g 5-High	Solid	Particulate	Sk	89979 (Ev	vidence of activity)	
	Tide Stage	1-Low 2-F	Falling 3-Slack	4-Rising	g 5-High	Solid	Particulate		89979 (Ev	vidence of activity)	
	Tide Stage Days Since	1-Low 2-F Last Signifi Drinking Wa	Falling 3-Slack	4-Rising	g 5-High	Solid		Sie	89979 (Ev	vidence of activity)	
ectio	Tide Stage Days Since Air On Method es Collected	1-Low 2-F b Last Signifi Drinking Wa Grab	Falling 3-Slack	4-Rising	g 5-High e:Oil Other	Direct		Sid	89979 (Ev	vidence of activity)	
mpi	Tide Stage Days Since Air	1-Low 2-F Last Signifi Drinking Wa	Falling 3-Slack	4-Rising Source	g 5-High	_	Particulate Collectio n Type	Split	89979 (Ev	vidence of activity) Water Other	
mpi	Tide Stage Days Since Air Air Method es Collected Container	1-Low 2-F b Last Signifi Drinking Wa Grab :	Falling 3-Stack icant Rainfall iter Utquid Compo	4-Rising Source	g 5-High e:Oil Other	Direct Coll	Collectio		89979 (Ev	vidence of activity) Water Other	
mpi	Tide Stage Days Since Air Air Method es Collected Container	1-Low 2-F b Last Signifi Drinking Wa Grab :	Falling 3-Stack icant Rainfall iter Utquid Compo	4-Rising Source Cosite	g 5-High e:Oil Other	Direct Coll	Collectio n Type	Split	89979 (Ev	vidence of activity) Water Other	
mpi	Tide Stage Days Since Air Air Method es Collected Container	1-Low 2-F b Last Signifi Drinking Wa Grab :	Falling 3-Stack icant Rainfall iter Utquid Compo	4-Rising Source Cosite	g 5-High e:Oil Other	Direct Coll	Collectio n Type D / I	Split Y/N	89979 (Ev	vidence of activity) Water Other	
mpi	Tide Stage Days Since Air Air Method es Collected Container	1-Low 2-F b Last Signifi Drinking Wa Grab :	Falling 3-Stack icant Rainfall iter Utquid Compo	4-Rising Source cosite lce? Y/N	g 5-High e:Oil Other	Direct Coll	Collection Type	Split Y/N Y/N	89979 (Ev	vidence of activity) Water Other	
mpi	Tide Stage Days Since Air Air Method es Collected Container	1-Low 2-F b Last Signifi Drinking Wa Grab :	Falling 3-Stack icant Rainfall iter Utquid Compo	4-Rising Source cosite Ice? Y/N Y/N	g 5-High e:Oil Other	Direct Coll	Collectio n Type D/I D/I	Split Y/N Y/N	89979 (Ev	vidence of activity) Water Other	
mpi	Tide Stage Days Since Air Air Method es Collected Container	1-Low 2-F b Last Signifi Drinking Wa Grab :	Falling 3-Stack icant Rainfall iter Utquid Compo	Source Source Lice? Y/N Y/N Y/N	g 5-High e:Oil Other	Direct Coll	Collection Type D/I D/I D/I	Split Y/N Y/N Y/N	89979 (Ev	vidence of activity) Water Other	
mpi	Tide Stage Days Since Air Air Method es Collected Container	1-Low 2-F b Last Signifi Drinking Wa Grab :	Falling 3-Stack icant Rainfall iter Utquid Compo	Source Source Losite Ice? Y/N Y/N Y/N Y/N	g 5-High e:Oil Other	Direct Coll	Collection Type D/I D/I D/I D/I D/I	Split Y/N Y/N Y/N Y/N Y/N	89979 (Ev	vidence of activity) Water Other	
mpi	Tide Stage Days Since Air Air Method es Collected Container	1-Low 2-F b Last Signifi Drinking Wa Grab :	Falling 3-Stack icant Rainfall iter Utquid Compo	Source Source Ice? Y/N Y/N Y/N Y/N Y/N Y/N	g 5-High e:Oil Other	Direct Coll	Collection Type D/I D/I D/I D/I D/I D/I	Split Y/N Y/N Y/N Y/N Y/N Y/N	89979 (Ev	vidence of activity) Water Other	
mpi	Tide Stage Days Since Air Air Method es Collected Container	1-Low 2-F b Last Signifi Drinking Wa Grab :	Falling 3-Stack icant Rainfall iter Utquid Compo	Source Source Ice? Y/N Y/N Y/N Y/N Y/N Y/N Y/N Y/N	g 5-High e:Oil Other	Direct Coll	Collection Type D/I D/I D/I D/I D/I D/I D/I	Split Y/N Y/N Y/N Y/N Y/N Y/N Y/N Y/N	89979 (Ev	vidence of activity) Water Other	
mpi	Tide Stage Days Since Air Air Method es Collected Container	1-Low 2-F b Last Signifi Drinking Wa Grab :	Falling 3-Stack icant Rainfall iter Utquid Compo	4-Rising Source cosite tce? Y/N	g 5-High e:Oil Other	Direct Coll	Collection Type D/I D/I D/I D/I D/I D/I D/I D/I	Split Y/N Y/N Y/N Y/N Y/N Y/N Y/N Y/N Y/N	89979 (Ev	vidence of activity) Water Other	
ections in the section of the sectio	Tide Stage Days Since Air Air Method es Collected Container	1-Low 2-F b Last Signifi Drinking Wa Grab :	Falling 3-Stack icant Rainfall ter Utquid Compo	Source Source Ice? Y/N Y/N Y/N Y/N Y/N Y/N Y/N Y/N	g 5-High e:Oil Other	Direct Coll	Collection Type D/I D/I D/I D/I D/I D/I D/I	Split Y/N Y/N Y/N Y/N Y/N Y/N Y/N Y/N	89979 (Ev	vidence of activity) Water Other	
ectio	Tide Stage Days Since Air Air Method es Collected Container	1-Low 2-F b Last Signifi Drinking Wa Grab :	Falling 3-Stack icant Rainfall ter Utquid Compo	4-Rising Source cosite tce? Y/N	g 5-High e:Oil Other	Direct Coll	Collection Type D/I D/I D/I D/I D/I D/I D/I D/I	Split Y/N Y/N Y/N Y/N Y/N Y/N Y/N Y/N Y/N	89979 (Ev	vidence of activity) Water Other	

Relinquished By:	Time ————————————————————————————————————			Received By:	
Pate/Time -		AM PM	-	Date/Time:	 AM PM
Samples placed in re-	stricted area by:	(initial)			
Legend Collection Type Direct Indirect Preservatives I2SO4 NaOH ICL Na2S2O3 INO3 none	Container Sizes 1/2 gal 250 mL 1 gal 500 mL 1 ql 4 oz 40 mL 8 oz 100 mL n/a	Container Types P - Ptasitc G - Glass Can - Canister C - Cartridge PB - Ptastic Bag S - Slide O - Other			

(Page 2 of 2 Pages)

Inspection ID:

Rev 0

Run No.: 17 Field No.: Station ID: 16594 USGS

08074250

City of Houston Houston Health Department Bureau of Pollution Control and Prevention 7411 Park Place Blvd 832.393.5730 FAX 832-393-5726

FIELD FORM & CHAIN OF CUSTODY FORM Station ID:

Location N	Vame:	Brickhouse	Gully (@ US 29	00 i.b. be	fore Sax	con				
Date:		Time (hhu	ım):		Samp	les Colle	ected	l by:			
Number of Since Last		:	Fie			ERVATI			1 Date: _		
Flow Sever	rity Ti	dal Stage	Col	or	Od	or	W	ater Surface	Curr Weat		Wind Intensity
1 - no flow 2 - low 3 - normal 4 - flood 5 - high 6 - dry*	2 - falling 2 - reddish 2 3 - slack 3 - greenish 3 4 - rising 4 - blackish 4 5 - high 5 - clear 3				1 – sewage 2 – oily/che 3 – rotten e 4 – musky 5 – fishy 6 – none 7 – other*	mical	3-1	calm ripples waves vhitecaps	1 – clear 2 – partly ci 3 – cloudy 4 – rain 5 - other		1 - calm 2 - sight 3 - moderate 4 - strong
Flow Meth	od F	low (cfs)	Seco	chi Depth	(cm)		Sam	ple Depth (ft)		Tot	al Depth (ft)
1 - flow-gauge 5 - Doppler INSTRUM		ADINGS						*Other Obs			
Temp (°C)	Conductiv (mS/cm		.u.)	Salinity (PSS)		solved en (mg/L)		Water too parameters. Ba			ameters only.
(1.0 to 38.0°C)	(0.03 to 60 ms	(5.0 to s.u.		0.009 to 45.0 PSS)	(0.5 to	15.0 mg/L)	_				
Request fo 1 – E. coli 2 – Enterococ		(circle what	is reque	sted)		of Contai					
						lab use o					
Acid ID#: Hz	504			1 -				/ No Therm			ctor(°C)
Samples re	linquished	l by:						1	Date/Tim	e:	
Lab Sample No			Re	ceived b	y:				Date/Tim	e:	

FF&COC version 19 updated 07/2023

"Note: If site is dry, photo should be taken. If water present within 400 m, and pool is 10+m long, and 0.4+m deep, collect sample and record Maximum pool width, depth, length, and percent pool coverage in 500 m reach (if measurable) in observations section.

Run No.: 17 Field No.: 8 Station ID: 22094 City of Houston Houston Health Department Bureau of Pollution Control and Prevention 7411 Park Place Blvd 832,393,5730 FAX 832-393-5726

FIELD FORM & CHAIN OF CUSTODY FORM

Location Nam	Location Name: Unnamed Trib of White Oak @ Helberg Date: Samples Collected by:													
Date:	Tim	e (hhmm)):	Samp	oles Colle	ected	l by:							
Number of Da Since Last Rai			_ Field Mete	er #:				Date: _						
Flow Severity	Tidal S	tage	Color	Od			ater Surface		rent ither	Wind Intensity				
									· · ·					
1 - no flow 2 - low 3 - normal 4 - flood 5 - high 6 - dry*	1 - low 1 - brownish 2 - felling 2 - reddish 3 - slack 3 - greenish 4 - rising 4 - blackish 5 - high 5 - clear 6 - other*			1 - sewage 2 - oily/che 3 - rotten e 4 - musky 5 - fishy 6 - none 7 - other*	mical	3-1	calm ripples waves whitecaps	1 – clear 2 – partly 3 – cloudy 4 – rain 5 - other		1 - calm 2 - slight 3 - moderate 4 - strong				
Flow Method	Flow (cfs)	Secchi Dept	h (cm)		Sam	ple Depth (ft)		To	tal Depth (ft)				
1 – flow-gauge statio 5 - Doppler	n													
INSTRUMEN		<u>VGS</u>				_	*Other Obs	ervations						
	nductivity mS/cm)	pH (s.u.)	Salinity (PSS)		ssolved en (mg/L))								
(1.0 to 38.0°C) (0.03	to 60 mS/cm)	(5.0 to 10.0 s.u.)	(0.009 to 45. PSS)	0 (0.5 to	15.0 mg/L)									
Request for An	alysis (circl	e what is	requested)	No.	of Contai	iners	1							
1-pH	5-C1	9 – N	I-NO ₂	_	100 mL ste	rile p	lastic	1 galle	on plastic					
2 - Conductivity	6-504			-	1 L plastic				astic w/ H					
3 - TSS	7 - N-NH ₃		E. coli Enterococcus		1 L plastic	(TKN)	bottle w/ H ₂ SO	4 (Analyze	d by H-GA	C contract Lab)				
4 - N-NO ₃	8 – T-PO ₄		Lincrococcus	For	lab use o	nly:								
Acid ID#: H ₂ SO ₄				-			/ No Therm Temp (°C)							
Samples relinq	uished by:						ı	Date/Tin	ne:					
Sample No.:			Received	by:			ı	Date/Tin	ne:					

FF&COC version 19 updated 07/2023

*Note: If site is dry, photo should be taken. If water present within 400 m, and pool is 10+m long, and 0.4+m deep, collect sample and record Maximum pool width, depth, length, and percent pool coverage in 500 m reach (if measurable) in observations section.

CITY OF HOUSTON DRINKING WATER REGULATORY COMPLIANCE LABORATORY

1770 Sidney street, Houston, TX 77023 LAKE HOUSTON WATERSHED SITE MONITORING FIELD SHEET & CHAIN OF CUSTODY

	Ellective	Date: 1	08/01/23									Documen	CID: 1	50		version:	1.12
	Date of Sampling:		Air Temperatu	ıre :		Days Since Las	t Significant Rain	ifall :			Samples C	ollected By:					
	Sample Run Collected Bi-Monthly						a one foot depth										_
Sample No.	Station Name	TCEQ ID	Time	Sample Depth (ft)	Total Depth (ft)	Water Temp °C	Sp. Cond. µs/cm	pH	DO mg/L	Secchi Depth (m)	Flow Severity	Obser. Turb.	Water	Water Odor	Present Weather	Wind	Water Surface
1	LUCE BAYOU HUFFMAN / CLEVELAND	11187							Ĭ		ĺ						
2	EAST FORK SAN JACINTO RIVER @ FM 1485 (gage 8070200)	11235															
3	CANEY CREEK @ FM 1485	11334															
4	PEACH CREEK @ FM 2090	11337															
5	EAST FORK SAN JACINTO @ SH 105 (gage 8070000)	11238															
6	PEACH CREEK @ FM 105	16625															
7	CANEY CREEK @MIIImac Rd.	21465															
8	WEST FORK SAN JACINTO @ FM 105 (gage 8067650)	11251															
9	STEWART CREEK @ LOOP 336, CONROE	16626															
10	CRYSTAL CREEK @ FM 1314	11181															
11	WEST FORK SAN JACINTO @ FM 242	11243															
12	SPRING CREEK @ 1-45 (gage 8068500)	11313															
13	CYPRESS CREEK @ 1-45 (gage 8069000)	11328															
											1-no flow	1-low	1-brownish		1-clear	1-calm	1-caim
Commer	nts:										24ow	2-medium	2-reddish	2-olly/chemical		2-slight	2-ripple
											3-normal	3-High	3-greenish		3-cloudy	3-mod.	3-wave
											4-flood		4-blackish		4-rain	4-strong	4-whitecap
											5-Ngh		5-clear		5-other		
											6-dry		6-other	6-none 7-other			
														/ OUE			
			001 Tabar 5														
	,		QP", T-phos, Ar													Matrix: Sur	race <u>Wate</u>
		500 mL	plastic bottle aci	idified with H ₂ S	SO ₄ for NH ₃ a	nalysis, 1-250	ttie from one site v mi amber bottle ac								ottles with 1:	1 HCl, 1-	
	* WQP analysis includes:	pH, Con	d., TSS, Alk, Ha	ara, NO ₂ -N, NO	o _s -N, F, Cl, Bi	r, SO ₄					Temperatur	re of Sample	s when Rec	elved at Lab:			
Blol. San	nples Relinquished By :		Date	9:	Time :_			Chem. Samp	oles Relinquis	shed By :			Date:	TII	me:	_	
Biol. San	ol. Samples Received By : Date: Time :							Chem. Samp	oles Received	I By :			Date:	т	lme :		

San Jacinto River Authority - Lake Conroe Division LAKE CONROE MONITORING FIELD SHEET

Effective Date: 8/20/2019

Date of Sampl	ling:			Samples Colle	cted By:				Days Since Las	st Significant	Rainfall:	
•Reservoir Sta	age (Feet above	mean sea lev	el:	*Reservoir Percent Full:				• Reservoir Ad	cessibility	Yes	No	
Sample No.	Total Depth (ft)	Time	Sample Depth (ft)	Temp	Sp Cond	рН	D.O.	Present Weather	Wind Intensity	Water Surface	Water Color	Water Odor
1												
Station Name								1-clear 2-partly cloudy 3-cloudy	1-calm 2-slight 3-moderate	1-calm 2-ripple 3-waves	1-brownish 2-reddish 3-greenish	1-sewage 2-oity/chemical 3-rotten egg
Walker County								4-rain 5-other	4-strong	4-whitecaps	4-blackish 5-clear	4-musty 5-fishy
TCEQ ID	1								Secchi Depth (m)]	6-oter	6-none 7-other
11344										1		
Comments:												
Sample No.	Total Depth (ft)	Time	Sample Depth (ft)	Temp	Sp Cond	рН	D.O.	Present Weather	Wind Intensity	Water Surface	Water Color	Water Odor
Sample No.		Time		Temp	Sp Cond	рН	D.O.	I			Water Color	Water Odor
		Time		Temp	Sp Cond	рН	D.O.	I			Water Color	Water Odor
	(ft)	Time		Temp	Sp Cond	рН	D.O.	Weather 1-clear 2-partly cloudy	Intensity	Surface		
2	(ft)	Time		Temp	Sp Cond	рН	D.O.	1-clear 2-partly cloudy 3-cloudy	Intensity 1-calm	Surface 1-calm 2-ripple 3-waves	1-brownish 2-reddish 3-greenish	1-sewage 2-oity/chemical 3-rotten egg
2 Station Name	(ft)	Time		Temp	Sp Cond	рН	D.O.	1-clear 2-partly cloudy 3-cloudy 4-rain	Intensity 1-calm 2-slight	Surface 1-calm 2-ripple	1-brownish 2-reddish 3-greenish 4-blackish	1-sewage 2-oity/chemical 3-rotten egg 4-musty
2	(ft)	Time		Temp	Sp Cond	рН	D.O.	1-clear 2-partly cloudy 3-cloudy	Intensity 1-calm 2-slight 3-moderate	Surface 1-calm 2-ripple 3-waves	1-brownish 2-reddish 3-greenish 4-blackish 5-clear	1-sewage 2-oily/chemical 3-rotten egg 4-musty 5-fishy
2 Station Name	(ft)	Time		Temp	Sp Cond	рН	D.O.	1-clear 2-partly cloudy 3-cloudy 4-rain	Intensity 1-calm 2-slight 3-moderate	Surface 1-calm 2-ripple 3-waves	1-brownish 2-reddish 3-greenish 4-blackish	1-sewage 2-oily/chemical 3-rotten egg 4-musty 5-fishy 6-none
2 Station Name T. James Creek	(ft)	Time		Temp	Sp Cond	рН	D.O.	1-clear 2-partly cloudy 3-cloudy 4-rain	Intensity 1-calm 2-slight 3-moderate 4-strong	Surface 1-caim 2-ripple 3-waves 4-whitecaps	1-brownish 2-reddish 3-greenish 4-blackish 5-clear	1-sewage 2-oily/chemical 3-rotten egg 4-musty 5-fishy
2 Station Name	(ft)	Time		Temp	Sp Cond	рН	D.O.	1-clear 2-partly cloudy 3-cloudy 4-rain	Intensity 1-calm 2-slight 3-moderate 4-strong	Surface 1-caim 2-ripple 3-waves 4-whitecaps	1-brownish 2-reddish 3-greenish 4-blackish 5-clear	1-sewage 2-oily/chemical 3-rotten egg 4-musty 5-fishy 6-none
2 Station Name T. James Creek	(ft)	Time		Temp	Sp Cond	рН	D.O.	1-clear 2-partly cloudy 3-cloudy 4-rain	Intensity 1-calm 2-slight 3-moderate 4-strong Secchi Depth	Surface 1-caim 2-ripple 3-waves 4-whitecaps	1-brownish 2-reddish 3-greenish 4-blackish 5-clear	1-sewage 2-oily/chemical 3-rotten egg 4-musty 5-fishy 6-none
2 Station Name T. James Creek	(ft)	Time		Temp	Sp Cond	рН	D.O.	1-clear 2-partly cloudy 3-cloudy 4-rain	Intensity 1-calm 2-slight 3-moderate 4-strong	Surface 1-caim 2-ripple 3-waves 4-whitecaps	1-brownish 2-reddish 3-greenish 4-blackish 5-clear	1-sewage 2-oily/chemical 3-rotten egg 4-musty 5-fishy 6-none
2 Station Name T. James Creek	(ft)	Time		Temp	Sp Cond	рН	D.O.	1-clear 2-partly cloudy 3-cloudy 4-rain	Intensity 1-calm 2-slight 3-moderate 4-strong Secchi Depth	Surface 1-caim 2-ripple 3-waves 4-whitecaps	1-brownish 2-reddish 3-greenish 4-blackish 5-clear	1-sewage 2-oily/chemical 3-rotten egg 4-musty 5-fishy 6-none
2 Station Name T. James Creek	(ft)	Time		Temp	Sp Cond	рН	D.O.	1-clear 2-partly cloudy 3-cloudy 4-rain	Intensity 1-calm 2-slight 3-moderate 4-strong Secchi Depth	Surface 1-caim 2-ripple 3-waves 4-whitecaps	1-brownish 2-reddish 3-greenish 4-blackish 5-clear	1-sewage 2-oily/chemical 3-rotten egg 4-musty 5-fishy 6-none
2 Station Name T. James Creek	(ft)	Time		Тетр	Sp Cond	рН	D.O.	1-clear 2-partly cloudy 3-cloudy 4-rain	Intensity 1-calm 2-slight 3-moderate 4-strong Secchi Depth	Surface 1-caim 2-ripple 3-waves 4-whitecaps	1-brownish 2-reddish 3-greenish 4-blackish 5-clear	1-sewage 2-oily/chemical 3-rotten egg 4-musty 5-fishy 6-none
2 Station Name T. James Creek	(ft)	Time		Temp	Sp Cond	рН	D.O.	1-clear 2-partly cloudy 3-cloudy 4-rain	Intensity 1-calm 2-slight 3-moderate 4-strong Secchi Depth	Surface 1-caim 2-ripple 3-waves 4-whitecaps	1-brownish 2-reddish 3-greenish 4-blackish 5-clear	1-sewage 2-oily/chemical 3-rotten egg 4-musty 5-fishy 6-none
2 Station Name T. James Creek	(ft)	Time		Temp	Sp Cond	рН	D.O.	1-clear 2-partly cloudy 3-cloudy 4-rain	Intensity 1-calm 2-slight 3-moderate 4-strong Secchi Depth	Surface 1-caim 2-ripple 3-waves 4-whitecaps	1-brownish 2-reddish 3-greenish 4-blackish 5-clear	1-sewage 2-oily/chemical 3-rotten egg 4-musty 5-fishy 6-none
2 Station Name T. James Creek TCEQ ID 16645	(ft)	Time		Temp	Sp Cond	рН	D.O.	1-clear 2-partly cloudy 3-cloudy 4-rain	Intensity 1-calm 2-slight 3-moderate 4-strong Secchi Depth	Surface 1-caim 2-ripple 3-waves 4-whitecaps	1-brownish 2-reddish 3-greenish 4-blackish 5-clear	1-sewage 2-oily/chemical 3-rotten egg 4-musty 5-fishy 6-none
2 Station Name T. James Creek	(ft)	Time		Тетр	Sp Cond	рН	D.O.	1-clear 2-partly cloudy 3-cloudy 4-rain	Intensity 1-calm 2-slight 3-moderate 4-strong Secchi Depth	Surface 1-caim 2-ripple 3-waves 4-whitecaps	1-brownish 2-reddish 3-greenish 4-blackish 5-clear	1-sewage 2-oily/chemical 3-rotten egg 4-musty 5-fishy 6-none
2 Station Name T. James Creek TCEQ ID 16645	(ft)	Time		Temp	Sp Cond	рН	D.O.	1-clear 2-partly cloudy 3-cloudy 4-rain	Intensity 1-calm 2-slight 3-moderate 4-strong Secchi Depth	Surface 1-caim 2-ripple 3-waves 4-whitecaps	1-brownish 2-reddish 3-greenish 4-blackish 5-clear	1-sewage 2-oily/chemical 3-rotten egg 4-musty 5-fishy 6-none
2 Station Name T. James Creek TCEQ ID 16645	(ft)	Time		Temp	Sp Cond	рН	D.O.	1-clear 2-partly cloudy 3-cloudy 4-rain	Intensity 1-calm 2-slight 3-moderate 4-strong Secchi Depth	Surface 1-caim 2-ripple 3-waves 4-whitecaps	1-brownish 2-reddish 3-greenish 4-blackish 5-clear	1-sewage 2-oily/chemical 3-rotten egg 4-musty 5-fishy 6-none
2 Station Name T. James Creek TCEQ ID 16645	(ft)	Time		Тетр	Sp Cond	рН	D.O.	1-clear 2-partly cloudy 3-cloudy 4-rain	Intensity 1-calm 2-slight 3-moderate 4-strong Secchi Depth	Surface 1-caim 2-ripple 3-waves 4-whitecaps	1-brownish 2-reddish 3-greenish 4-blackish 5-clear	1-sewage 2-oily/chemical 3-rotten egg 4-musty 5-fishy 6-none
2 Station Name T. James Creek TCEQ ID 16645	(ft)	Time		Temp	Sp Cond	рН	D.O.	1-clear 2-partly cloudy 3-cloudy 4-rain	Intensity 1-calm 2-slight 3-moderate 4-strong Secchi Depth	Surface 1-caim 2-ripple 3-waves 4-whitecaps	1-brownish 2-reddish 3-greenish 4-blackish 5-clear	1-sewage 2-oily/chemical 3-rotten egg 4-musty 5-fishy 6-none
2 Station Name T. James Creek TCEQ ID 16645	(ft)	Time	Depth (ft)	Temp		pH	D.O.	Veather 1-clear 2-partly cloudy 3-cloudy 4-rain 3-other	Intensity 1-calm 2-slight 3-moderate 4-strong Secchi Depth	Surface 1-caim 2-ripple 3-waves 4-whitecaps	1-brownish 2-reddish 3-greenish 4-blackish 5-clear	1-sewage 2-oily/chemical 3-rotten egg 4-musty 5-fishy 6-none

Water Quality Laboratory

San Jacinto River Authority

Woodlands - Clean Rivers Program Field Sheet

Date of		Samples				Days Since	Last		*Reservoir	Stage (FT a	bove Mean Sea Level)
Sampling:		Collected By				Significant	Rainfall:			 Reservoir 	Percent Full:
				Total	Secchi	Water	Water	Present	Water	Wind	1
Sample No.	Station Name	TCEQ ID	Time	Depth (ft)	Depth (m)	Color	Odor	Weather	Surface	Intensity	Reservoir Accessible?
LW#1	Lake Woodlands #1 - North	16484									Yes No
200 11 1	end, downstream of	10404									
	Research Forest Dr.		Sample Depth	Temp	Cond.	pН	D.O.		Comments	:	
		Surface									
		Mid-Depth]			
		Bottom						1	İ		
											1
				Total	Secchi	Water	Water	Present	Water	Wind	
Sample No.	Station Name	TCEQ ID	Time	Depth (ft)	Depth (m)	Color	Odor	Weather	Surface	Intensity	
LW # 2	Lake Woodlands # 2 - Mid	16483									
	point in lake		Sample Depth	Temp	Cond.	pН	D.O.		Comments		
		Surface						1	ĺ		
		Mid-Depth						1	i		
								1			
		Bottom									
				Total	Secchi	Water	Water	Present	Water	Wind	
Sample No.	Station Name	TCEQ ID	Time	Depth (ft)	Depth (m)	Color	Odor	Weather	Surface	Intensity	
LW#3	Lake Woodlands # 3 -	16481									
	Western reach near			_							
	Meadow Cove & Pleasure		Sample Depth	Temp	Cond.	pН	D.O.		Comments		
	Cove Drives	Surface							ļ		
		Mid-Depth									
		Bottom									
				Total	Secchi	Water	Water	Present	Water	Wind	
Sample No.	Station Name	TCEQ ID	Time	Depth (ft)	Depth (m)	Color	Odor	Weather	Surface	Intensity	
LW # 4	Lake Woodlands # 4 - South	16482									
	end, near West end of dam		Sample Depth	T	Cond.	-u	D.O.		Comments		
			Sample Depth	Temp	Cona.	pН	D.O.	1	Comments		
		Surface							ļ		
		Mid-Depth							ļ		
		Bottom									
Water Color: 1 =	r: 1 = clear, 2 = partly cloudy, 3 = cloudy brownish, 2 = reddish, 3 = greenish, 4 = sewage, 2 = olly / chemical, 3 = rotten	blackish, 5 = clear	r, 6 = other	7 = other				1 = calm, 2 = ri : 1 = calm, 2 = si			
Surveyor SN:	Sonde SN:_			Sheet review	ed by:		Data enter l	by:	Date:		Data Reviewed by: Date:
Form Updated:	August 16, 2019										

Water Quality Laboratory

San Jacinto River Authority

Woodlands - Clean Rivers Program Field Sheet

Date of Sam	npling:			Samples Col	lected By:					Days Since	Last Signific	ant Rainfal	l:	
Sample No.	Station Name Lower PB (footbridge)	TCEQ ID	Time	Total Depth (ft)	Trans Tube (m)	Water Color	Water Odor	Present Weather	Sample Depth	Temp	Cond.	pH	D.O.	Flow Severity
LPB#2	upstream of Sawdust Rd. & WWTP #1	16627 Comments:												
Sample No.	Station Name	TCEQ ID	Time	Total Depth (ft)	Trans Tube (m)	Water Color	Water Odor	Present Weather	Sample Depth	Temp	Cond.	pН	D.O.	Flow Severity
LPB#3	Panther Branch - 295 M downstream of Sawdust	16422												
	Rd.	Comments:												
Sample No.	Station Name	TCEQ ID	Time	Total Depth (ft)	Trans Tube (m)	Water Color	Water Odor	Present Weather	Sample Depth	Temp	Cond.	рН	D.O.	Flow Severity
UPB#3	Bear Branch upstream of Research Forest Dr. 20 M	16631												
		Comments:												
											C 0060	400 B		
								1 -			Gage 8068	400 Readin	5=	CF
Sample No.	Station Name	TCEQ ID	Time	Total Depth (ft)	Trans Tube (m)	Water Color	Water Odor	Present Weather	Sample Depth	Temp	Gage 8068 Cond.	400 Readin	D.O.	Flow Severity
Sample No.	Upper Panther Branch - 80 M upstream of WWTP #2 on	16629	Time							Temp				Flow
	Upper Panther Branch - 80	16629	Time							Temp				Flow
	Upper Panther Branch - 80 M upstream of WWTP #2 on	16629	Time	Depth (ft)	(m)	Color	Odor	Weather	Depth	Temp				Flow Severity
	Upper Panther Branch - 80 M upstream of WWTP #2 on Research Forest Dr.	16629 Comments:	Time							Temp				Flow
UPB#1	Upper Panther Branch - 80 M upstream of WWTP #2 on Research Forest Dr. Station Name Upper PB (footpath) - 170 M downstream of WWTP #2	16629 Comments: TCEQ ID 16630		Depth (ft)	(m) Trans Tube	Color	Odor	Weather	Depth		Cond.	рН	D.O.	Flow Severity
UPB#1	Upper Panther Branch - 80 M upstream of WWTP #2 on Research Forest Dr. Station Name Upper PB (footpath) - 170 M	16629 Comments: TCEQ ID		Depth (ft)	(m) Trans Tube	Color	Odor	Weather	Depth		Cond.	рН	D.O.	Flow Severity
UPB # 1 Sample No. UPB # 2	Upper Panther Branch - 80 M upstream of WWTP #2 on Research Forest Dr. Station Name Upper PB (footpath) - 170 M downstream of WWTP #2	16629 Comments: TCEQ ID 16630 Comments:	Time	Total Depth (ft)	(m) Trans Tube (m)	Water Color	Water Odor	Weather	Sample Depth	Temp	Cond. Cond.	pН	D.O.	Flow Severity

Form Updated: August 16, 2019

Environmental Institute of Houston, University of Houston-Clear Lake Clean Rivers Program Field Datasheet

Station ID:	Date (m	nm/dd/yyyy):		Sample T	ime (hh:mm):		
Location:							
Collected By (Firs	t initial, last name):						
		EMENTS If depth <0.5; take one mea If ≥ 1.5m deep - perform pro sep take profile at 0.3m from bottom, the	file at 0.3m from b	ottom, middle, and 0.	3m from surface		riace
	1	2	3	4		5	6
Temp (C)							
Conductivity (uS)							
Salinity (psu)							
DO (%sat)							
DO mg/L							
pH			~				
Depth (m)							
Mark - Sk		Similar in the latest of the l	IELD OBSER	VATIONS	1 The Late 1	1 7 2 9 3 1 1 1 1 2	
0	WATER SURPACE 1-call WIND INTENSITY 1-call 3-mo WATER COLOR 1-bro 4-bla DAYS SINCE LAST SIG: PRESENT WEATHER 1-4-rain FRESH (Non-Tidal)	derate 4-strong wnish 2-reddish 3-greenish ckish 5-clear 6-other	WATER SAM	APLES is Requested	RECREATION	4-tood 5-tigh 6-cty 1-gage 2-electric 3- 4-electric 3- 4-	rechanical ler =2" observed, 3=non-contact dence, 5=2" evidence, 5=non dence, 7=no evidence g 5-high
No the Control of the		ADDITION	AL INFORMAT	TION & REMARK	S	RIVING - REGRE	DAMA DAMA
If site has isol	ated pools (> 10	m in length and 0.4m deep) record;				
atength	Long	of largest pool in reach t pool coverage in 500m re	. Maximum	pool width	(m), 1	Maximum pool dept	h(m), Pool

Environmental Institute of Houston, University of Houston-Clear Lake Stream Flow (Discharge) Measurement Form

Stream: Date:____ Station:___ Description:____ Time End: Meter Type:____ Time Begin: _____ Stream Width*:_____ Section Width (W):____ Observers:___ Observations: Section Midpoint | Section Depth | Observational Velocity (V) Flow (Q) (ft)(m) (ft)(m) (cm) Depth** (m3/s)(ft3/s)) At Point Average (ft)(m) (D) Q = (W)(D)(V)(ft/s)(m/s) (ft/s)(m/s) m3/s x 35.3 =ft3/s Total Flow (Discharge) (Σ Q) *See Attached Discharge Sheet Field Discharge (Σ Q)

Modified from TCEQ-20117 (Rev. 04/22/2004)

Page 1 of 1

Texas Research Institute for Environmental Studies - Sam Houston State University Clean Rivers Program Field Data/Sampling Sheet

Station ID:	Dat	e:				Time o	f Water Sar	nple Collectio	n:
Location:					Lat:		L	ong:	
Collected By:									
FIELD N	MEASUREMENT	\$ (If < 0.5m (50cn	n) - record at 1/3 of	depth from the s	urface. If between	0.5m (50cm)	& 1.5m (150cr	n) deep - record	@ 0.3m (30 cm) from surface).
	1		2		3			4	5
Tomp (C)			-					-	
Temp (C)									
Conductivity (uS)									
DO mg/L									
pH									
ample Depth (cm/m)									
				FIELD OBS	ERVATIONS				
	TOTAL DEPTH (cr	v/m)				PRESENT	WEATHER	1-clear 2-party 4-rain 5-other	cloudy 3-cloudy
	WATER ODOR	1-sewage 2-oily/ch 4-musky 5-fishy 6-				FLOW SEV	ERITY	1-no flow 2-low 4-flood 5-high 6	
	WATER SURFACE)		FLOW (cfs)			
	WIND INTENSITY					FLOW MET	нов	1-gage 2-electri	
	WATER COLOR	3-moderate 4-stro 1-brownish 2-redo				SECCHI TU	IBE (cm/m)	4-weirflume 5-c	oppier
	WATER CLARITY	4-blackish 5-clear 1-EXCELLENT]			
	I T	3-FAIR	4-POOR			i		NFALL (> or = 0.50	
	1-LOW 2-MEDIU					-		erved (#ofpeo;	
						Rec. Observe	d	O= no evidence o	bserved, 1= evidence observed
				WATER S	AMPLES				
		☐ FRES	н			Field Shift C	kollected (yes/r	in)	
		(Non-Ti	dal)					-,	
		E. col	1						
Conta	ainer	Droce	rvative	Analysis	Requested	T		Commen	ts
	il - Plastic	Ice, Na ₂ S ₂ O ₂ tab			o and/or E. coll)			Commen	
1 x 1L - F		Ice		T88					
1 x 250 n	ni - Piastic Plastic	Ice Ice, H ₂ 80 ₄		CI, NO _{3,} NO ₂ , 8 TKN	0,	-			
	n - Plastic	Ice, H ₆ 804		NHi					
1 x 125 m	i - Plastic	ice, HNO ₂		TPO ₄					
			ADDITIO	NAL INFOR	MATION & REM	AARKS			
			ADDITIO	IIAE IIII OIG	A TION GIVE	i Aire			
" If site is dry, determin Maximum pool width_			if pool(s) exists (> (m), Pool length		nd 0.4m deep) reco nd percent pool cov		Long m reach	of is %.	argest pool in reach

Surface Water Quality Monitoring TRIES Stream Flow (Discharge) Measurement Form

Stream:				Date	<u> </u>
Station:					
Description:					
Time Begin:			Meter Type:		
Observers:		Stream Wi	idth*:	_ Section Widt	h (W):
Observations:					
	0 11 0 11	o	Valacit	00	F1 (0)
Section Midpoint	Section Depth	Observational	Velocit	y (v)	Flow (Q)
(ft) (m) (cm)	(ft) (m) (cm)	Depth**	At Point	Average	(m³/s) (ft³/s)
	(D)	(ft) (m) (cm)	(ft/s)(m/s)	(ft/s)(m/s)	Q = (W)(D)(V)
4.					
m3/s x 35.3 =ft3/s					
			Field Disch	arge (Σ Q)	
				3- ()	

^{*}Stream Width: < 330 cm (3.3m), take 10 flow measurements; >330 cm (3.3m), take 20-30 flow measurements

Stream Depth: >76 cm, take flow measurements at 20 and 80 percent of total depth; for 20% of depth, multiply the total depth by 2, set wading to this value and take velocity reading. For 80% of depth, divide total depth by 2, set wading rod to this value and take velocity reading.

Appendix E: Chain of Custody Forms

EASTEX ENVIRONMENTAL LABORATORY, INC.

www.eastexlabs.com

P.O. Box 1089 * Coldspring, TX 77331 (936) 653-3249 * (800) 525-0508 P.O. Box 631375 * Nacogdoches, TX 75963-1375 (936) 569-8879 * FAX (936) 569-8951 White Copy-Follows Samples Yellow Copy-Laboratory Pink Copy-Client Copy

REPORT TO.			INVOIC	L IU.																				
Company:			Comp	pany:						Rema	arks:				٥			П			П		П	
Address:			Attn: Phone#: INSTRUCTIONS:									- 1	- 1		- 1									
Attn:			Attn:							┨					E	- 1	- 1	- 1	- 1	- 1	- 1	- 1	- 1	- [
			+							-					ટ્ડ	- 1	- 1	- 1	- 1	- 1	- 1	- 1	- 1	- 1
Phone#:			Phon												3	- [- 1	- [- 1	- 1	- 1	- 1	- 1	- 1
Email:			INSTR	UCTION	IS:										\§	- 1	- 1	- [- [-	- 1	- 1	- 1	- 1
P.O. #:			C or G: Matrix:	Matrix: DW-Drinking Water WW-Wastewater SO-Soll/Sludge OT-Other						П		-	-	-	1	-	-		-					
Sampler's Name (pri	int):		Contain	iner Size: 1=Gallon 2=1/2 Gallon 3=Quart/Liter 4=500mL 5=250mL 6=125mL (4oz) 7=60mL (2 oz) 8= 40mL VIal 9=Other							1													
Sampler's Signature	e:		Type:	P- Plastic G- Glass T- Teflon S- Sterile						П	1	1	1	1	1	1	1	1	1					
			Preserv	stives: C=Chilled S=Sulfuric Acid N=Nitric Acid B=Base/Caustic Z= Zn Acetate ST=Sodium Thiosulfate H=HCl O=Other					ate	И	1	1	1	1	1	1	1	1	1					
Project Name:	Clean Rivers Pro	ogram			ST-Sodium Thiosulfate H-HCL O-Other Field Data Containers					1	1	1	1	1		1	1	1	l					
Work Order ID	Sample ID	Date	Time	Matrix	C or G	DO	pH	CI2	Elow	Temp	#	Т		Pres	ľ		1		Ι.					
Work Order ID	Sample ID	Date	Time	mauix	COIG	- 50	pn	CIZ	FIOW	remp	-	Size	туре	ries							\vdash		\vdash	
																	\vdash	\vdash						\vdash
						-			-	-		-					├	⊢						\vdash
												_					_	_						_
																		\vdash						
			+														\vdash	\vdash						\vdash
Relinquished By:				Receiv	ed By:							Date			Time		_	-	Dece	iver	Liced		FS /	NO.
Relinquished By:			Received Iced: YES Received By: Date Time																					
Relinquished By:			Received Iced: YES																					
LAB USE ONLY	Can	anla Condition	Accept	able:	VES	/ NO			T -	•0	#Th-		Loca	and le S	ve.						lcec	: Y		
Alternate Check In:	San	ipie Condition	on Acceptable: YES / NO Temp *C *Therm ID Logged In By: Date Time Date Time																					
				*Thermometer has 0.0 factor and recorded temperature is actual temperature																				

Chain of Custody Revision 3: 05/01/18

Eastex Environmental Laboratory, Inc.

Pollution Control Services Department 101 S. Richey, Suite H Pasadena. Texas 77506 Office, 713-920-2831 FAX: 713-274-647

Sample Data and Custody Record

44											- 1	AM
ld:		Nam	ne	-						Key Map.		
nple t	ocation						Outfall:					2.7
	ocation Info:		Service III					-	-			70
come			Collected (sar	nole cor	moromised)	Field T	est Only	Пи	lo Flow			
	tor(s):		,		_			_				
					Tests and	Measurer	nents					
	Temperate	tte (,C)	Diss	clved O	xygen (mg/L)		Specific Cor	nductivit	y (µS)		Water De	pth (meters)
	pH (standa	ard units)	Salir	nity (ppt)) [SECCHI Di	sk Trans	sparency	(meters)		
8 1			Tim ter		Field Obs	ervations-	Water					
	Water Col	or 1-Brown	ish 2-Reddish	3-Green	nish 4-Blackish	5-Clear 6-	Other					
	Surface C	onditions 1-	Clear 2-Scum	3-Foar	n 4-Debris 5-St	neen						
	_				otten Egg 4-Mus		ElMore 7	Other				
		_	-	cai 3-ro	onen Egg 4-Mut	sky o-risny	b-None /	-Oiner			-	
	Turbidity	1-Low 2-Med	dium 3-High									
	Water Sur	face 1-Caln	n 2-Ripples 3-	Waves	4-White Caps							
	LIFE LET			F	leid Observatio	nsWeath	er and Othe	or				
	Present W	eather 1.Cl	ear 2. Partly CI		Cloudy 4-Rain							
	=					J-011101 _						
	Wind Inten	sity 1-Calm	2-Slight 3-Mo	oderate	4-Strong							
	_											
	Tide Stage	1-Low 2-F	alling 3-Slack	4-Risin	g 5-High				899	78(Numbe	er of people	observed)
	= -								=	-		-
	Days Since	e Last Signifi	cant Rainfall				-		=	-	er of people	-
trix:	Days Since		cant Rainfall	Sourc	e:	Solid	Particulate	Sit	899	79 (Evide	nce of activi	-
llectio	Days Since	e Last Signifi Drinking Wa	icant Rainfall	Sourc	e:	Solid	Particulate	Sit	899	79 (Evide	nce of activi	ty)
llectio	Days Since	e Last Signifi Drinking Wa	icant Rainfall	Sourc	e:	Solid	Particulate	Sic	899	79 (Evide	nce of activi	ty)
llectio	Days Since Air Days Since Air Days Since	e Last Signifi Drinking Wa Grab :	icant Rainfall	Sourc	e:	Direct		Sic	899	79 (Evide	nce of activi	ty)
llection in the care in the ca	Days Since Air On Method les Collected Container	e Last Signifi Drinking Wa Grab : Container	icant Rainfall fer Liquid Compo	Sourc	Oil Other	Direct Coll.	Collectio		899 udge	79 (Evide	nce of activi	ty)
llectio	Days Since Air Days Since Air Days Since	e Last Signifi Drinking Wa Grab :	icant Rainfall	Sourc	Oil Other	Direct		Split Y/N	899	79 (Evide	nce of activi	ty)
llection in the care in the ca	Days Since Air On Method les Collected Container	e Last Signifi Drinking Wa Grab : Container	icant Rainfall fer Liquid Compo	Source source tree?	Oil Other	Direct Coll.	Collectio n Type D / I	Split Y/N	899 udge	79 (Evide	nce of activi	ty)
llection in the care in the ca	Days Since Air On Method les Collected Container	e Last Signifi Drinking Wa Grab : Container	icant Rainfall fer Liquid Compo	Source source for the source for the source for the source source for the source source for the source source	Oil Other	Direct Coll.	Collection Type	Split Y/N Y/N	899 udge	79 (Evide	nce of activi	ty)
llection in the control of the contr	Days Since Air On Method les Collected Container	e Last Signifi Drinking Wa Grab : Container	icant Rainfall fer Liquid Compo	Source source tree?	Oil Other	Direct Coll.	Collectio n Type D / I	Split Y/N	899 udge	79 (Evide	nce of activi	ty)
llection in the care in the ca	Days Since Air On Method les Collected Container	e Last Signifi Drinking Wa Grab : Container	icant Rainfall fer Liquid Compo	Source source for the source for the source for the source source for the source source for the source source	Oil Other	Direct Coll.	Collection Type	Split Y/N Y/N	899 udge	79 (Evide	nce of activi	ty)
llection in the care in the ca	Days Since Air On Method les Collected Container	e Last Signifi Drinking Wa Grab : Container	icant Rainfall fer Liquid Compo	Source sosite fice? Y/N Y/N	Oil Other	Direct Coll.	Collection Type D/I D/I	Split Y/N Y/N	899 udge	79 (Evide	nce of activi	ty)
llection in the care in the ca	Days Since Air On Method les Collected Container	e Last Signifi Drinking Wa Grab : Container	icant Rainfall fer Liquid Compo	Source So	Oil Other	Direct Coll.	Collection Type D/I D/I D/I D/I	Split Y/N Y/N Y/N Y/N	899 udge	79 (Evide	nce of activi	ty)
llection in the control of the contr	Days Since Air On Method les Collected Container	e Last Signifi Drinking Wa Grab : Container	icant Rainfall fer Liquid Compo	source tce? Y/N Y/N Y/N Y/N Y/N	Oil Other	Direct Coll.	Collection Type D/I D/I D/I D/I D/I	Split Y/N Y/N Y/N Y/N Y/N Y/N	899 udge	79 (Evide	nce of activi	ty)
llection in the care in the ca	Days Since Air On Method les Collected Container	e Last Signifi Drinking Wa Grab : Container	icant Rainfall fer Liquid Compo	Source So	Oil Other	Direct Coll.	Collection Type D/I D/I D/I D/I	Split Y/N Y/N Y/N Y/N	899 udge	79 (Evide	nce of activi	ty)
llection in the care in the ca	Days Since Air On Method les Collected Container	e Last Signifi Drinking Wa Grab : Container	icant Rainfall fer Liquid Compo	source tce? Y/N Y/N Y/N Y/N Y/N	Oil Other	Direct Coll.	Collection Type D/I D/I D/I D/I D/I	Split Y/N Y/N Y/N Y/N Y/N Y/N	899 udge	79 (Evide	nce of activi	ty)
llection in the care in the ca	Days Since Air On Method les Collected Container	e Last Signifi Drinking Wa Grab : Container	icant Rainfall fer Liquid Compo	source state	Oil Other	Direct Coll.	Collection Type D/I D/I D/I D/I D/I D/I D/I	Split Y/N Y/N Y/N Y/N Y/N Y/N Y/N	899 udge	79 (Evide	nce of activi	ty)
llection in the care in the ca	Days Since Air On Method les Collected Container	e Last Signifi Drinking Wa Grab : Container	icant Rainfall fer Liquid Compo	source siste toe? Y/N	Oil Other	Direct Coll.	Collection Type D/I	Split Y/N	899 udge	79 (Evide	nce of activi	ty)
llection in the care in the ca	Days Since Air On Method les Collected Container	e Last Signifi Drinking Wa Grab : Container	icant Rainfall fer Liquid Compo	source state to state	Oil Other	Direct Coll.	Collection Type D/I D/I D/I D/I D/I D/I D/I D/I	Split Y/N Y/N Y/N Y/N Y/N Y/N Y/N Y/N	899 udge	79 (Evide	nce of activi	ty)
llection in the care in the ca	Days Since Air On Method les Collected Container	e Last Signifi Drinking Wa Grab : Container	icant Rainfall fer Liquid Compo	source siste toe? Y/N	Oil Other	Direct Coll.	Collection Type D/I	Split Y/N	899 udge	79 (Evide	nce of activi	ty)
llection in the care in the ca	Days Since Air On Method les Collected Container	e Last Signifi Drinking Wa Grab : Container	icant Rainfall fer Liquid Compo	source siste toe? Y/N	Oil Other	Direct Coll.	Collection Type D/I	Split Y/N	899 udge	79 (Evide	nce of activi	ty)

				Custody			
Relinquished By:					Received By:		
Date/Time:			AM PM	-	Date/Time:		AM PM
Samples placed in re	stricted area	a by:	(Initial)				
Legend	Contain	er Sizes	Container Types			×.	
Collection Type D - Direct	1/2 gal 1 gal	250 mL 500 mL	P - Plasito G - Glass				
I - Indirect	1 qt	4 oz	Can - Canister				
Preservatives H2SQ4 NaOH HCL Na2S2O3 HNO3 none	40 mL 100 mL	8 oz n/a	C - Cartridge PB - Plastic Bag S - Slide O - Other				

Inspection ID:

(Page 2 of 2 Pages)

Rev 0

Run No.: 17 Field No.: 8 Station ID: 22094

City of Houston Houston Health Department Bureau of Pollution Control and Prevention 7411 Park Place Blvd 832.393.5730 FAX 832-393-5726

FIELD FORM & CHAIN OF CUSTODY FORM

Location N	ame: Unn	amed Trib	of White O	ak @ He	lberg					
Date:	Tin	ne (hhmm):	:	Samp	les Colle	cted	by:			
Number of	Days									
Since Last			Field Meter	r#:		_	Calibration	ı Date: _		
			FIE	LD OBSI	ERVATI	ONS	<u>s</u>			
Flow Sever	ity Tidal S	tage	Color	Od	or	Wa	iter Surface		rent ither	Wind Intensity
1 – no flow 2 – low 3 – normal 4 – flood 5 – high 6 – dry*	1 – low 2 – falling 3 – slack 4 – rising 5 – high	2 - 3 - 4 - 5 -	brownish reddish greenish blackish clear other*	1 – sewage 2 – oily/cher 3 – rotten el 4 – musky 5 – fishy 6 – none 7 – other*		3-v	alm ipples vaves vhitecaps	1 – clear 2 – partly 3 – cloudy 4 – rain 5 - other		1 - calm 2 - slight 3 - moderate 4 - strong
Flow Metho	od Flow (cfs)	Secchi Depth	(cm)		Sam	ple Depth (ft)		To	tal Depth (ft)
1 – flow-gauge : 5 - Doppler	station									
INSTRUM	ENT READI	NGS					*Other Obs	ervations	:	
Temp (°C)	Conductivity (mS/cm)	pH (s.u.)	Salinity (PSS)		solved en (mg/L)					
						7				
(1.0 to 38.0°C)	(0.03 to 60 mS/cm)	(5.0 to 10.0 s.u.)	(0.009 to 45.0 PSS)	(0.5 to	15.0 mg/L)	_				
Request for	Analysis (circ	le what is r	enuested)	No.	of Contai	nerc				
1-pH	5-Cl	9 – N-			100 mL ste			1 gallo	on plastic	
2 – Conductivi			1102		1 L plastic	inc pi	iustic .		astic w/ H	SO ₄
3 - TSS	7 – N-NH ₃	10 – E	. coli			TKN)	bottle w/ H ₂ SO			
4 – N-NO ₃	8 – T-PO ₄	11 – E	nterococcus						-	•
				For	lab use o	nly:				
	_		Samp	les Receiv	ed on Ice?	Yes	/ No Therm	ometer ID		
Acid ID#: H ₂ S	O ₄		Temp	(°C)	Corre	ected	Temp (°C)	Co	rrected Fa	actor(°C)
Samples rel	linquished by:							Date/Tin	ne:	
Lab Sample No.	:		Received b	у:			ı	Date/Tin	ne:	
FF&C0	C version 18 updated	07/2023		nple and recon	d Maximum po		r precent within 400 th, depth, length, and			

Run No.: 17 Field No.: 7 Station ID: 16594

USGS Station ID: 08074250 City of Houston
Houston Health Department
Bureau of Pollution Control and Prevention
7411 Park Place Blvd
832.393.5730 FAX 832-393-5726
FIELD FORM & CHAIN OF CUSTODY FORM

Location Name: Brickhouse Gully @ US 290 i.b. before Saxon

Location 1	vaine.	Bilci	Mouse	Gui	ry te US .	290 1.0. 00	erore sax	ш				
Date:		Tim	e (hhn	nm):		Samp	oles Colle	cted	l by:			
Number of Since Last					Field Met FII	er#:			Calibration S	ı Date: _		
Flow Seve	rity	Tidal S	tage		Color	Od	lor	Wa	ater Surface		rent ither	Wind Intensity
1 – no flow 2 – low 3 – normal 4 – flood 5 – high 6 – dry*		1 – low 2 – falling 3 – slack 4 – rising 5 – high		2 - re 3 - gr 4 - bi 5 - ci	rownish eddish reenish lackish lear ther*	1 - sewage 2 - oily/che 3 - rotten e 4 - musky 5 - fishy 6 - none 7 - other*	mical	2-r 3-v	calm ripples waves whitecaps	1 – clear 2 – partly 3 – cloudy 4 – rain 5 - other	•	1 – calm 2 – slight 3 – moderate 4 - strong
Flow Meth	od	Flow (efs)	9	Secchi Dep	th (cm)		Sam	ple Depth (ft)		То	tal Depth (ft)
1 - flow-gauge 5 - Doppler INSTRUM Temp (°C')	IENT Cond	READIN luctivity S/em)	NGS pH (s	.u.)	Salinity (PSS)		ssolved en (mg/L)		*Other Obs Water too parameters. B.	shallow to	collect co	onventional rameters only.
(1.0 to 38.0°C)	(0.03 to	60 mS/cm)	(5.0 to :		(0.009 to 45. PSS)	0.5 to	o 15.0 mg/L)	_				
Request fo 1 – E. coli 2 – Enteroco		ysis (circl	e what	is re	quested)		<u>of Contai</u> 100 mL ste					
							lab use o					
Acid ID#: H2	SO ₄					iples Receiv ip (°C)			:/No Therm Temp(°C)	ometer ID Co		actor(°C)
Samples re	linqui	shed by:								Date/Tin	ne:	
Sample No	.:				Received	by:			1	Date/Tin	ne:	

*Note: If site is dry, photo should be taken. If water present within 400 m, and pool is 10+m long, and 0.4+m deep, collect sample and record Maximum pool width, depth, length, and percent pool coverage in 500 m reach (if measurable) in observations section.

FF&COC version 19 updated 07/2023

Surface Water Monitoring Report Clean Rivers Program

Houston Health Department Bureau of Laboratory Services Water & Dairy Section 2250 Holcombe Blvd. Houston, TX 77030 832.393.3939

Collected by
Date Collected
Relinquished by
Received by

Lot #

White Oak Bayou

Run 17

	STATION NUMBER	SITE LOCATION	TIME SAMPLED		nalysis quested	LAB SAMPLE NUMBER	Flow Rate	Daya since rainfail
1	16593	Cole Creek @ Bolivia		E. coli		5519 Bolivia Blvd		
2	15831	White Oak Bayou @ West Tidwell		E. coli		29.846366, -95.460566		
3	11155	Vogel Creek @ Little York		E. coli		29.863442, -95.466665		
4	11394 HG161	White Oak @ N. Houston –Rosslyn Rd.		E. coli		29.876650, -95.494634		
5	11157*	Rolling Fork Creek @ Lake Ln.		E. coli		29.881100, -95.535008		
6	11396	White Oak Bayou @ Tahoe		E. coli		29.890848, -95.560428		
7	16594*	Brickhouse Gully @ US 290 j.b. before Saxon		E. coli		29.826660, -95.476839		
8	22094 16595	Unnamed Trib of White Oak @ Helberg		E. coli		29.810596, -95.454665		

Flow Rate

1 = no flow 2 = low 3 = normal 4 = flood 5 = high 6 = dry

*Bacteria and Field parameters only

	Lab Use Only
Sample received on <u>ice?</u> Y / N Seals Intact? Y / N	Sample Temp°C Corrected Temp°C Thermometer ID
Job ID	Additional information

Rev 03/23 Page 1 of 1

CITY OF HOUSTON DRINKING WATER REGULATORY COMPLIANCE LABORATORY

1770 Sidney street, Houston, TX 77023 LAKE HOUSTON WATERSHED SITE MONITORING FIELD SHEET & CHAIN OF CUSTODY

Del	Effective	Date: 1	09/01/23									Documen	tID: 1	50		Version:	1.12
	Date of Sampling:		Air Temperatu	re :	_	Days Since Las	t Significant Rain	fall :	_		Samples C	ollected By:					_
	Sample Run Collected BI-Monthly				Note: All sa	amples taken at	a one foot depth I	by plastic bud	cket unless sp	pecifically des	Ignated In	Sample De	pth' column	below.			
Sample No.	Station Name	TCEQ	Time	Sample Depth (ft)	Total Depth (ft)	Water Temp °C	Sp. Cond. us/cm	рH	DO mg/L	Secchi Depth (m)	Flow Severity	Obser. Turb.	Water	Water Odor	Present Weather	Wind	Water Surface
1	LUCE BAYOU HUFFMAN / CLEVELAND	11187		Dopar (ii)	Dopum (iv)	10	poon	,	gr.	Sopan (m)	Coloniy		00.01	-	.,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	- Incompany	0011000
2	EAST FORK SAN JACINTO RIVER @ FM 1485 (gage 8070200)	11235															
3	CANEY CREEK @ FM 1485	11334															
4	PEACH CREEK @ FM 2090	11337															
5	EAST FORK SAN JACINTO @ SH 105 (gage 8070000)	11238															
6	PEACH CREEK @ FM 105	16625															
7	CANEY CREEK @MIIImac Rd.	21465															
8	WEST FORK SAN JACINTO @ FM 105 (gage 8067650)	11251															
9	STEWART CREEK @ LOOP 336, CONROE	16626															
10	CRYSTAL CREEK @ FM 1314	11181															
11	WEST FORK SAN JACINTO @ FM 242	11243															
12	SPRING CREEK @ 1-45 (gage 8068500)	11313															
13	CYPRESS CREEK @ I-45 (gage 8069000)	11328															
											1-no flow	1-low	1-brownish	1-sewage	1-clear	1-caim	1-caim
Commer	nts:										2-low 3-normal	2-medium 3-high	2-reddish	2-ollyichemical	2-p.cloudy 3-cloudy	2-slight 3-mod.	2-ripple 3-wave
											4-flood	angn	3-greenish 4-blackish	3-rotten egg 4-musty	4-rain		4-whitecap
											5-high		5-clear	5-fishy	5-other	4 20010	- mincoap
											6-dry		6-other	6-none			
														7-other			
						_											
	Analysis Required:		QP", T-phos, A													Matrix: Sur	face <u>Water</u>
	Bottles used:						ittle from one site v mi amber bottle ac								ottles with 1:	1 HCl, 1-	
	* WQP analysis includes:	pH, Con	d., TSS, Alk, Ha	rd, NO ₂ -N, N	0 ₃ -N, F, Cl, B	r, SO ₄					Temperatu	re of Sample	s when Rec	elved at Lab:			
Blol. San	nples Relinquished By :		Date	9:	Time :			Chem. Samp	oles Relinquis	shed By :			Date:	ті	me:	_	
Blol. San	nples Received By :		Date	:	Time :			Chem. Samp	oles Received	I By :			Date:	т	lme :		

DRINKING WATER OPERATIONS LABORATORY

4200 Leeland Street, Annex Building, Houston, TX 77023

San Jacinto River Authority - Lake Conroe Division LAKE CONROE MONITORING CHAIN OF CUSTODY

Effective Date: 8/21/2019 Document ID: 150 Version: 1.11

Date of 8a	ampling:						Samples Co	ollected By:						
		Analysis Requested:												
Sample No.	Station Name	Watershed ID	TCEQ ID	Time	Grab or Composite	T88	WQP *	Total Coliform & E.Coli	T.Phos & TOC	Ammonia	Con	nments:		
1	Walker County	23	11344											
2	T. James Creek	25	16645											
3	Weir Creek	3	16644											
4	Caney Creek	6	16643											
5	Tim Cude Creek	26	16642											
6	Lost Lake Creek	33	16640											
7	Lewis Creek	4	16641											
8	W.C. Clark Creek	27	16639											
9	Atkin Creek	5	16638											
10	Intake Lake Conroe	24	11342											
Bottles u	sed:		c bottle for W zed bottle for r bottle acidif	QP analysis			•			elved on Ice:	YesNowhen Received at Lab:			
• WQP an	alysis includes:	pH, Cond., Alk	, Hard, NO ₂ -l	N, NO ₃ -N, F, CI, BI	r, 80 ₄						ible: YesNo In comment section abov	_		
Biologica Relinquis	l Samples hed By :	Date:_		Time:			Chemical 8: Relinquishe				Date:	Time:		
	I Samples By :	Date:		Time:			Chemical 8 Received B				Date:	_ Time:		

Texas Research Institute for Environmental Studies (TRIES) Environmental Studies Analytical Laboratory Sam Houston State University Chain of Custody

TRIES Log Number:

Tideb bog Tideber.	
Name: Ashley Morgan-Olvera	Company: TRIES Aquatics Lab
Address: 2424 Sam Houston Avenue, Suite B-8	City, State, Zip: Huntsville, TX 77341
Telephone: 936-294-3716	Email: arm001@shsu.edu
Sampler Name: Ashley Morgan-Olvera	Sampler Signature:

Date Collected	Time Collected	Matrix Code	c ^{Ty}	rpe G	Sample Description/Location	Sample Number	Bottle ID	Preservation Code	Acid Type	Acid volume (mL)	CF°C Obs °C	pН	CL, SO4, NO2, NO3	TSS	T PO4	NH3	E. coli		
		AQ		G			B1	С					X						
		AQ		G			B2	С			/			X					
		AQ		G			В3	A			/				X				
		AQ		G			B4	D								X			
		AQ		G			Col	С									X		
											$\overline{}$								

TAT	Matrix Code	Type Code	Preservation Code	Sample Receipt Checklist: Shipped Delivered Container tape present Container tape intact Cooler Temp (°C)
N= Normal (10 days)	WW = wastewater	C = composite	C = 0 to <6 °C A = pH<2 HNO ₃	BrokenLeakingPreserved COC and labels match Sufficient quantity
E = Expedite (5 days)	AQ= aqueous	G = grab	B = pH<2 HCl D = pH<2 H ₂ SO ₄	Lab Comments:
R= Rush (1 day)	SW= solid			

Relinquished by:	Date/Time:	Relinquished by:		Date/Time:
Received by:	Date/Time:	Received by:		Date/Time:
Thermometer ID:	pH strips lot:	HNO3:	HCI:	H2SO4:

Effective Date: 10/28/2019 2424 Sam Houston Ave Ste B8 · Huntsville, TX 77340 · Phone (936)294-3979 · Fax (936) 294-3822

Appendix F: Data Review Checklist

H-GAC Clean Rivers Program Local Partner

Data Submittal Form and Data Review Checklists

Please complete this form, sign where applicable, and submit with copies of Field Sheets, Chain-of-Custody Forms and Lab Data Reports pertaining to data in this submittal. One form is required for each submission. Failure to complete and submit this form will impede the process whereby data is submitted to TCEQ for inclusion in the State of Texas Surface Water Quality Monitoring (SWQM) database or included in the H-GAC Data Clearinghouse. This form applies to only those sampling sites listed in the Coordinated Monitoring Schedule for FY 2024 or FY2025.

Local Partner:	
Water Body:	<u>—</u>
Data Start Date:	Data End Date:
Total Number of Events in this Data Submittal: (Total number of sample sites monitored t	imes the number of monitoring visits to each site
Total Number of Results in this Data Submittal:_ (Each event contains multiple field and/or	
Notice: Attach extra pages to document informat	ion that exceeds the spaces provided.

Field Data Review

List instrument(s) used to collect field measurements.
Was the instrument pre-calibrated before each sampling run? Yes No
Explain why not
Explain why not Was an instrument post-calibration check performed within 24-hours after each use?
Yes No
Explain why not
Explain why not. Did all post-calibration checks pass? Yes No
What were the minimum and maximum post-calibration errors for the field instrument data associated
with this Data Review Checklist? Please express as a range.
Dissolved Oxygen (\pm 6% saturation or \pm 0.5 mg/L)
pH (+ 0.5 standard units)
Specific Conductance (± 5 % standard)
Temperature (± 1.0 °C, annual calibration check)
Depth (± 0.2 at 1 meter, annual calibration check)
Were all field parameters measured and documented for each station location? Yes No
Were water samples collected for all required laboratory parameters at every station
location? Yes No
Were water samples "iced" immediately upon collection or acidified in the field as
required? Yes No
Were all field sheets completed using indelible ink? Yes No
Were errors on field sheets corrected using a single line with initials of person making the correction
and date corrected? Yes No
If no, explain
If no, explain
closed-out? Yes No
Were problems encountered while collecting any field measurements? Yes No
Explain
Were these problem(s) documented on the field sheets? Yes No
Were problems encountered in the field, communicated to the supervisor so the H-GAC
Project Manager could be notified as required by the QAPP? Yes No
Were there any results (outliers) in this data set greater than the maximum screening value or less
than the minimum screening value? Yes No
Were outlier(s) documented on the field sheets? Yes No
Were all chain-of-custody forms and/or field data sheets filled out completely and accurately?
Yes No
Were empty sections of every Chain of Custody form and/or field data sheet closed-out with a diagonal
line, initials and date closed-out? Yes No
Have field data sheet(s) or chain-of-custody form(s) changed since the last data submittal to
H-GAC? Yes No
Explain, if yes, or attach a new form
Provide source of "Days Since Last Significant Rainfall" data:
Provide additional comments about Field Data on an extra page attached to this report
and the second second and the second
Print Name Signature Date

Lab Data Quality Review

Were all holding times confirmed? Yes No
Were samples received at the lab "in ice" and in the process of cooling to $\leq 6^{\circ}$ C?
Yes No
Explain if no
Were any water samples analyzed that exceeded holding time requirements?
Yes No
Were those results removed from data set submitted to H-GAC? YesNo
Were empty sections of the Chain of Custody form closed-out with diagonal lines, initials and date
closed-out? Yes No Are you sure? Yes No
Are all lab values reported consistent with the Limit of Quantitation (LOQ) for each parameter listed in
Table A7.1 of the Regional QAPP or Special Studies QAPP? Yes No
Explain if no Have errors on lab sheets been corrected using a single line with initials of person making the
correction and date corrected? Yes No
Were empty sections of every lab sheet closed-out with a diagonal line, initials and date closed-out?
Yes No
Were there any results that were not reported by the lab? Yes No
Explain if yes
Data reasonableness and correctness of analysis have been confirmed and <u>documented</u> so H-GAC can
easily find for the following situations.
• For bacteria densities that are too few or too numerous to count, are values reported as < or >
the applicable minimum or maximum value? Yes No
• Are there any results in this data set greater than the maximum screening values or less than the
minimum screening values? Yes No
• Are there any results in the data set that "Best Professional Judgment" would indicate a
possible error and an investigation is warranted? Yes No
• If yes to any previously bulleted questions, have the results been reconfirmed and documented
as being accurate so H-GAC doesn't need to hunt for answer? Yes No
What kind of QA/QC data is provided with this data submittal?
What kind of Q14 QC data is provided with this data submittan.
Are all sample results submitted to H-GAC NELAP complaint? Yes No
Exceptions to NELAP compliance:
Exceptions to IVEE/II compliance.
Additional comments about Lab Data
Person who reviewed the lab sheets and results for accuracy and completeness:
Print Name Signature Date

Data Entry, Formatting and Table Structure

	IMEs and ENDTIMEs data entered using at with leading zeros as necessary?	
	ported in meters? Yes No	<u>_</u>
Were any samples collected	d from depths greater than 0.3 meters?	Yes No
Have all asterisks (*) been	vas the composite information recorded removed from the database being submaterfere with queries, searches, etc.)	itted to H-GAC?
	in the database? Yes No	
explanation for the	ter due to lab or sampling problems, is to blank field in the comment section? It in the current QAPP, Coordinated Mo	Yes No
recent amendment included Yes No	d with data being submitted to H-GAC?	-
(Refer to www.tceq.stat "All STORET Are all outliers confirmed, can review them? Are appropriate quality ass for verification and	urance/quality control information or revalidation by H-GAC? Yesn the data set been reviewed against fie	s of every STORET code) AC Data Manager esults included with the data set No
	t Data Entry, Formatting and Table Stru	ucture
Person who reviewed the d	atabase for accuracy and completeness:	
Print Name	Signature	Date
Electronic data set was sub	mitted to H-GAC on	
Electronic data set was sub-	mitted to H-GAC by:	
Print Name	Signature	Date

Appendix G: Data Summary Reports

Houston-Galveston Area Council

Clean Rivers Program Data Summary

Data Information

Data Source: HG (source 1); HG (source 2)

Date Submitted: <u>02/22/2023</u>

Tag ID Range: <u>1051350 to 1051375</u>

Date Range: 09/20/2022 to 10/13/2022

Comments

- 1. This report addresses ambient and 24-hour dissolved oxygen monitoring data, all of which are attached to the data submission email.
 - a. During FY22-23, 24-HR DO monitoring includes Stations 11405, 16475, 16675, and 16676.
 - i. UI will be conducting the 24-HR DO monitoring at 11405 (Armand Bayou at Fairmont Pkwy) starting Jan 2023.
 - b. During Quarter 4, Station 18192 was considered a No Flow site with pools, but the accessible pool was not large enough to qualify according to SWQM guidelines. Limited results are included for this event.
 - c. Due to construction activities, Stations 11145 and 17937 were not sampled during this period.
- 2. Summary statistics for 24-hour DO monitoring events are calculated from raw data downloaded from the datasonde and are assumed to be correct if the datasonde has passed post-calibration and the data series shows the sonde was always in the water. Outliers flagged by the SWQMIS validation algorithm are reviewed and accepted by H-GAC. There are four (4) 24-hour DO events in this dataset.
- 3. The CRP QAPP specifies a limit of quantitation of 1 MPN/100 mL for *E.coli* (31699), achievable when 100 mL of sample is analyzed. Eastex Laboratory does not analyze 100 mL aliquots; the effective LOQ is 10 MPN/100 mL from 1:10 dilutions.

- 4. Water color (89969) and water odor (89971) are only reported as "Other" ("6" and "7" respectively) if H-GAC has confirmed that a description is included in the "Comments" field.
 - a. No results are identified as "other" in this dataset.
- 5. Total Kjeldahl nitrogen (TKN) is analyzed at 12 stations on a quarterly basis. There are 10 results:
 - a. TKN was not analyzed from Stations 11145 and 17937 (See Comment 1c).
- 6. There are 21 instantaneous flow (00061) and corresponding flow method (89835) results in the dataset.
- 7. H-GAC made the following changes in the dataset:
 - a. Changed incorrect ">" to "<" for 3 flow measurements (total of 4 measurements of "<0.01" cfs).
- 8. The following outliers were verified by H-GAC and/or Eastex Laboratory staff:
 - a. Instantaneous Flow (00061): 3 results were less than the SWQMIS minimum of 0.01 (confirmed with Flow Severity =1)
 - b. Nitrate (00620): 1 result was greater than the SWQMIS maximum of 11.61 mg/L
 - c. Total Phosphorus (00665): 2 results were greater than the SWQMIS maximum of 3.09 mg/L
 - d. Total Depth (82903): 3 results were less than the SWQMIS minimum of 0.1 m
 - e. Percent Pool Coverage (89870): 1 result was less than the SWQMIS minimum of 10%.

Houston-Galveston Area Council	
CRP Data Manager <u>Jessica Casillas</u>	Date <u>02/21/2023</u>
Houston-Galveston Area Council	
CRP Quality Assurance Officer Jean Wright	Date <u>02/22/2023</u>

Appendix H: Data Management Process

H-GAC's Surface Water Quality Data Management Process

1. When the data manager receives field and laboratory data from individual local partners, all electronic files are saved in the partner's 'Raw Data' folder. Electronic files may include tabular data, data summary checklists, calibration records, and laboratory quality assurance documents that are referenced during the data review and validation process. The data files may be in the form of Excel spreadsheets, Access tables, scanned field data collection forms, or files downloaded directly from field instrumentation. Transfer of data is through e-mail or file sharing services, such as ShareFile and OneDrive. When a data set or individual files are received through any method, an e-mail confirmation is sent to the submitter. The e-mails are stored within an Outlook folder, which has a retention policy of 7 years.

No modifications or corrections are made to files in the raw data folders.

- 2. Raw data files are then copied to the partner's "Working Data" folder. All modifications to the data prior to SAS processing are performed on the files in the "Working Data" folder. Compilation of the submitted data, where necessary, is performed by the H-GAC data manager. This typically involves combining and re-formatting spreadsheets or database tables, as well as other data management tasks. Field/variable names are changed to standardized formats, parameter names in the raw data files are replaced by TCEQ parameter codes, and data types are changed as required. Most of these tasks are performed after the data has been imported into the SAS environment for processing. In rare cases (e.g. to correct a data entry error or add data that was not entered prior to submission) H-GAC staff may enter data manually into the working file or add SAS code to make the change. Because the measurement performance specifications found in the A7.1 table may vary from one QAPP to another, the working data file does not include data collected under two different QAPPs. The file may, however, contain information from more than one month within the fiscal year covered by an individual QAPP.
- 3. Field and laboratory data for specific sample sites (monitoring stations) are combined during SAS processing.
- 4. During SAS processing, all fields (columns) in the compiled dataset are renamed and reformatted to comply with SWQM data management guidelines. Consult the most recent version of the "Data Management Reference Guide for Surface Water Quality Monitoring" for further information.
 - a. The fields containing sample site, sample date, sample time, and sample depth are renamed STATION_ID, ENDDATE, ENDTIME, and ENDDEPTH respectively.
 - b. The parameter names used by the partner are replaced by the TCEQ parameter code, preceded by an "S" to ensure that the data is read by SAS procedures as text data.
 - c. Example: The field or column for dissolved oxygen is renamed "S00300".
- 5. The units of measurement as reported by the partner may not comply with SWQM guidelines. In most cases the SAS code will make the conversion to the correct units. If it is discovered that the code for conversion has not been written or is incorrect, or if the partner does not report the results consistently, manual conversion of the units may be necessary. In many cases, the SAS code will

- flag any records reported in the wrong units for other reasons (below or above screening values, for example), and the correction can be made using SAS.
- 6. If the SAS code does not include an algorithm for reformatting dates and times, the data manager ensures that these data are formatted as mm/dd/yyyy and hh:mm respectively prior to import.
- 7. The partner may submit data for parameters that are not included in the A7.1. In most cases, the SAS code will simply omit the parameter from inclusion in the final datasets. It is better to modify the SAS code if unwanted parameters appear in the final dataset.
 - **Note:** While references appear in this document to modification of the SAS code, these are for expository purposes only. The code should only be modified by a person who is very familiar with SAS programming in general, and the CRP processing code in particular.
- 8. When a database table(s) or Excel spreadsheets containing all field and laboratory data have been compiled and reformatted (if needed) as described above, they are saved to the SAS input folder within the "SAS Data Processing" folder (currently at "G:\CE\Databases\Clean_Rivers_Program\SAS_Data_Processing\Input") as an Access database or an Excel file. The input file should be renamed to include a code identifying the partner and the date range of the data.
- 9. As part of SAS processing, tables containing laboratory specific quantitation limits, TCEQ minimum and maximum screening values, and site name / monitoring station ID correspondences are imported for comparison to the partner data. At the beginning of the period under which a specific QAPP is applicable, the data manager ensures that the tables containing this information correspond (where applicable) to the A7.1 tables. The data manager updates these tables at other times as needed.
- 10. The data manager modifies the SAS program used for the partner's most recent dataset for processing of the current data as follows.
 - a. The most recent SAS program for the partner is saved with a name identifying the partner and date range of the data.
 - b. All references to input and output files within the program are replaced with a name identifying the partner and date range of the data, and the program is saved.
- 11. The SAS program creates a new Access database in the "Access" folder within the "SAS Data Processing" folder. The database should have the same name as the input file.
 - a. The database contains at least two tables: The "Input_Data_Matrix" that contains all data in the input file, and the "Flagged_Records_1" table.
- 12. The "Flagged_Records_1" table identifies questionable data that must be investigated by the data manager and quality assurance officer (QAO). The table is generated from comparisons against screening levels to identify outliers, quantitation limit tables to identify improperly reported data, and a variety of other comparisons. The program includes algorithms to identify the following:

- a. Reported values beyond TCEQ screening limits (outliers);
- b. Values reported as negative numbers;
- c. Illegal values (e.g., results for qualitative parameters that are not in the range of allowed values);
- d. Reported orthophosphate that exceeds the reported total phosphate;
- e. Nitrate+nitrite concentration is less than nitrite concentration;
- f. Inconsistent/irregular observed turbidity and water clarity results;
- g. Inconsistent/irregular water surface and wind intensity results; and
- h. Other algorithms are added to the QA protocol as needed.
- 13. The data manager is responsible for reviewing each flagged record against available raw data, data submittal checklists from the partner agency, instrument calibration records, and so forth, and where necessary obtaining additional information from the partner agency in order to determine the appropriate action to be taken. The flagged records table contains a variety of fields for documenting the disposition of the problem. In summary, a flagged record is accepted (on the basis of verification by the data manager), replaced with a corrected value, or deleted. Any corrections, deletions, or additions to the data set are noted so that they can be included in the Data Summary Report submitted to TCEQ.
- 14. At present, there is a subset of data quality problems that cannot be identified or corrected using the flagged records table. It may be necessary to make changes to the input file to correct some errors and inconsistencies identified during subsequent review by the data manager or QAO.
- 15. E-mail communications with the staff of partner agencies that are made during the data verification process are retained with the final data package that is stored within H-GAC's file storage system.
 - a. An example of a singular data set's folder is "G:\CE\Databases\Clean_Rivers_Program\Current Text and Validator Files\2023 Datasets\Aug 2023 Deliverables\HG Jan Feb 2023"
 - b. Each data set submitted to TCEQ has a file folder where the final pipe-delimited text files, Data Summary Report, Validator Report, and the temporary SWMQIS Validator Report link are stored. These files are submitted to TCEQ. In addition to final data set files, this folder contains any communication or files where data has been reviewed or validated by H-GAC staff or staff of local partners.
- 16. Before changes are made to each data set, the data manager creates a "Data Summary Report" for that specific data set. The Data Summary Report is created from the most recent Data Summary Report for that partner agency and saved with the name of the current data set. All changes to the data and/or action taken on the data set are documented in this report. In addition, summary narratives discussing missing data, outliers that were verified and accepted, explanations of variations in reporting the data, failure to meet A7.1 LOQs, and so forth are also included. Pertinent information from the data submittal checklist submitted by the partner agency is also included in the final report. This report is submitted to TCEQ with each data set.
- 17. The data submittal checklist submitted by the partner agency is reviewed for the following, at minimum:

- a. If the quality control information included in the report indicates that data has been reported that did not meet the measurement performance specifications of the A7.1 tables, it will be removed from the dataset. The removal will be noted on the "Data Summary Report".
- b. If the quality control information included in the report indicates that data has been reported that did not meet method-specific quality control criteria, the impact on data usability will be evaluated. Data may be removed from the dataset if legal defensibility is questionable. The removal will be noted on the "Data Summary Report".
- c. The post-calibration error limits in the partner agency's data submittal checklist shall be checked against requirements, as well as raw calibration records if available.
- d. Reports of missing data, and the reasons that the data is missing (QC failure, spilled sample, could not sample site, etc.).
- 18. The SAS program may be re-run following action on flagged records where revision(s) to the input files were necessary. New tables and files are created and over-ride previously created SAS outputs. The most important of these outputs are the "Draft_Data_Matrix" and the pipe-delimited text files that are submitted directly to TCEQ.
 - a. The portion of the SAS code that assigns TAG ID numbers is edited during the SAS program execution phase.
- 19. Once the SAS program is finalized for a data set, the data manager reviews the pipe-delimited text files. Each event and its relative results are reviewed for completeness, transcription errors, reasonableness, and conformity with the QAPP's A7.1 table. Thus, all data submitted to TCEQ has been reviewed by the data manager. The completed review document (Excel spreadsheet) is saved in the data set's file folder (See comment 15a).
- 20. The data manager's review file(s) and Data Summary Report is submitted to the QAO. The "Draft_Data_Matrix" and draft Data Summary Report are reviewed by the QAO, who identifies all values that, in the QAO's judgment, are unreasonable, are unverified outliers, or are otherwise questionable. Written comments and concerns are returned to the data manager for further investigation and correction of the dataset (where warranted). Newly identified discrepancies are investigated and documented on the Data Summary Report.
- 21. The data manager reviews the written comments, takes the appropriate action, and documents any additional actions on the Data Summary Report. If action is taken, the change is most commonly performed in the pipe-delimited text files and saved, over-riding the previously created text files. However, if the change(s) are significant, the SAS program may be re-run for that data set. Any changes to the text files or original input files for SAS program re-runs are documented in the Data Summary Report.
- 22. The written comments from the quality assurance officer, with annotations by the data manager, are retained with the data package as a record of data review and modification (where applicable).
- 23. The text files created by the SAS program and the final Data Summary Report are then submitted to TCEQ by the data manager. The data is first submitted to the SWQMIS (database) validation

algorithm to obtain a Validation Report; the files are then e-mailed to the CRP Project Manager at TCEQ. E-mails related to the submission of data are also stored in the data set's file folder.

- a. The data manager stores the event and result files within the data set's folder.
- b. Each file is edited to remove the header line (field names).
- c. The data manager logs into the SWQMIS system, and submits the files and data summary report as described in the SWQM Data Management Reference Guide (https://www.tceq.texas.gov/waterquality/data-management/dmrg_index.html, published in June 2019) or the most current version of the same.
- d. If the system identifies validation errors, upload is canceled, and the validation errors are investigated and corrected. In some cases, this may involve editing the text files only.
- e. When no validation errors are found, the upload is completed, and a Validator Report is created and saved (with a unique file name) as a PDF file.
- f. The data manager reviews the Validator Report to identify remaining discrepancies between the dataset, Data Summary Report, and A7.1 table requirements that may have been missed. The appropriate actions, to include resubmission of the data to obtain a revised Validator Report, are performed.
- g. The text files, Data Summary Report, and the Validator Report are e-mailed to the CRP Project Manager.
- h. The Validator Report is saved within the data set's folder. All files related to the dataset are saved in one folder. A subfolder contains the review process where any correspondence with the partner or QAO are documented as well (See comment 15a).
- 24. The data manager updates the "CRP Dataset Status" tracking document to include the date the files were sent to TCEQ.
 - a. The "CRP Dataset Status" tracking document is currently located at the following pathway: "G:\CE\Databases\Clean_Rivers_Program\CRP Data Management\CRP Dataset Status_Updated_DDMONTHYEAR".
- 25. If the CRP Project Manager identifies further problems with the dataset, the appropriate action is taken and revised data sets or data correction requests (where appropriate) are submitted. E-mail communications with the CRP project manager are retained on file with the data package to serve as a record of validation and modification of the dataset.
- 26. When the data set is accepted by TCEQ and loaded into SWQMIS, the data manager updates the "CRP Dataset Status" tracking document to include the acceptance date.
- 27. Data management activities are documented in the Excel tracking document ("CRP Dataset Status") maintained by the data manager. The tracking document contains each data set submitted to TCEQ, its status, date of submission, and date of acceptance to SWQMIS. All data set files, and any correspondence related to the data set are saved within a single file folder for that data set. These folders are organized by fiscal year, data deliverable date, by local partner, and finally by the date period of the data set.

Appendix I: Geospatial Data Management Plan

Geospatial Data Management Plan June 2023

HOUSTON-GALVESTON AREA COUNCIL

Community & Environmental Planning Department

Prepared in cooperation with the Texas Commission on Environmental Quality under the authorization of the Texas Clean Rivers Act The Geospatial Data Management Plan (GDMP) outlines the standard policies and procedures for data management within the Community and Environmental Planning (C&E) Department. The GDMP is written by the Data Analytics and Research Department, previously known as the C&E Department's Planning and Forecasting Group. The GDMP covers the management of both tabular (non-geographic) and spatial (geographic) datasets. Its primary purpose is to ensure the efficient access and maintenance of these datasets within the H-GAC Geospatial/Geographic Information Systems (GIS) environment.

GIS technology provides a systematic means to capture, manipulate, analyze, store, and display spatially referenced data. GIS supports a wide variety of applications ranging from site assessments, environmental planning, urban planning, and spatial analysis to support organizational strategies. In general, GIS supports the overall departmental goals of guiding regional planning, enhancing the quality of the region's natural environment, and public education through outreach programs. H-GAC supports various programs within the C&E and Data Analytics and Research departments through data development, spatial analysis, geospatial applications development, cartography in support of departmental goals.

The GDMP is considered a dynamic working document which responds to changing technology, funding, staffing, and project requirements. Consequently, the GDMP is reviewed on a bi-annual basis and amended as necessary. The current and complete version of The Plan can be accessed at https://www.h-gac.com/community-and-environmental-planning-publications/water-resources