

SAN BERNARD WATERSHED PROTECTION PLAN: The Spatially Explicit Enrichment Calculation Tool (SELECT) UPDATE

Wharton, TX June 16, 2011

STUDY AREA

- Area of approximately 900 mi²
- San Bernard River has a length of 125 mi and flows through Austin, Colorado, Wharton, Fort Bend and Brazoria counties
- Approximately, 15% of the stream is tidally influenced
- The watershed receives around 52in of rainfall at year
- The watershed is mainly undeveloped

SELECT MODEL

- SELECT (Spatially Explicit Load Enrichment Calculation Tool) is an analytical approach for developing an inventory of potential bacteria loads based on land use and geographical location.
- It evaluates each pollutant source and identifies subwatersheds with the greatest contamination potential.
- It was successfully used to evaluate bacteria loads in Plum Creek and Bastrop Bayou watersheds
- Limitations:
 - The model overestimates potential sources because it does not account for mitigation processes within the watershed.

METHODOLOGY

- 1. SPATIAL SUBDIVISON OF THE WATERSHED:
- Based on HUC-12 subdivision
- Major tributaries
- Location of WQMS

METHODOLOGY

2. LAND COVER CLASSIFICATION

Land use distribution per subwatershed/ County <u>Details Analysis</u> 2006 NLCD was used

3. IDENTIFICATION OF SOURCES

Non-Point Sources of Bacteria

- On-site sanitary system facilities H-GAC
- Pets (Dogs) AVMA
- Wildlife (Deer, Geese, and Feral Hogs) -TWPD
- Urban Runoff
- Livestock (Census of Agriculture 2007)

Point Sources of Bacteria

WWTPs – Loads and Self-reported Flows SSOs - TCEQ

Calculation

of Loads

ASSUMPTIONS OF THE MODEL

1. <u>OSSFs loadings were recalculated based on the Households forecast instead</u> of OSSFs database.

- Increase on number of OSSFs proportional to households (HH) growth in rural areas
- Non regulated (previous 1989) and regulated OSSFs systems presented a failure rate of 50% and 12% respectively (Reed, Stowe, and Yanke, 2001)
- A buffer zone of 100 m was delimited around streams. It was assumed that 100% of the loadings within the buffer and 25% of the loadings outside the buffer reach the streams.
- 3. Effluent concentrations from WWTPs were assumed to be 126 cfu/dL
 - Increase on WWTPs effluents proportional to population growth in urban areas.

ASSUMPTIONS OF THE MODEL

- 4. Livestock were located mainly in grassland areas and wildlife were located in forest and wetland areas (Teague, 2009). <u>Habitats assignation</u>
 - Livestock, deer, and geese population were considered to remain constant at current values during forecast.
- 5. Estimates on Feral Hogs densities were reevaluated Highlights (Burns, 2011)
 - A density of 3 to 5 hogs/km² was used in the model
 - Growth of 20% annual on Hogs population
- New HH in rural areas were considered to occupy ¹/₂ ac per HH and were located in cultivated, grassland, forest and wetlands in proportion (40, 40, 10, and 10%).

7. Birds and Waterfowl population should be considered as a potential source.

An inventory of rookeries in the coastal area was obtained from FWS
Not included in the model

7. Birds and Waterfowl population should be considered as a potential source.

Sewer System Overflows SSOs

- Data for SSOs were obtained for SB
- Scarce data. 71 events reported (four facilities) in a 7-year period.
- 92% of the overflows were generated by storm events and reported in Sub watershed 9, at city of Brazoria and city of Sweeny facilities
- This source was not included in the analysis.

			#	TOTAL DURATION	TOTAL	EC CONC.	EC TOTAL LOADING
SUBWAT.	EPA Permit	Date	events	(days)	GALLONS	(#cfu/dL)	(cfu/day)
1	TX0114880	8/29/2005	1	0.2083	0	1.00E+07	0.00E+00
5	TX0098949	5/23/2003	1	0.2083	9000	1.00E+07	1.18E+13
9	TX0024511	6/2/2002, 6/16/04	2	0.0417	200000	1.00E+07	1.31E+15
9	TX0025615	06/26/06-09/20/10	62	25.17	1418870	1.00E+07	1.54E+13

RESULTS - LOADINGS BUFFER ZONE

SOURCES	NO BUFFER		BUF	FER	% REDUCTION
OSSFs	1.4E+13	4.2%	4.8E+12	3.3%	65%
WWTPs	9.8E+09	0.0%	9.8E+09	0.0%	0%
Urban Runoff	1.2E+13	3.8%	1.2E+13	8.4%	0%
Dogs	3.9E+13	12.0%	2.3E+13	16.0%	40%
Cattle	1.8E+14	54.8%	6.9E+13	47.5%	61%
Horses	5.7E+11	0.2%	2.2E+11	0.2%	61%
Sheep/Goats	2.1E+13	6.5%	8.1E+12	5.5%	62%
Livestock	2.0E+14	61.5%	7.8E+13	53.2%	61%
Deer	2.3E+12	0.7%	9.2E+11	0.6%	60%
Feral Hogs	5.1E+13	15.7%	2.0E+13	13.9%	60%
Geese	6.8E+12	2.1%	6.8E+12	4.6%	0%
Wildlife	6.0E+13	18.5%	2.8E+13	19.1%	53%
TOTAL	3.3E+14	100%	1.5E+14	100%	56%

RESULTS - Contribution of potential E. *coli* sources

NLDC 2006 COMPOSITION PER SOURCE (%)												
		0000		Urban	Demo	Cattle	Lloreos	Sheep/	Deer	Coord		TOTAL LOADING
SORM.	SUBWATERSHED	USSES	VV VV I P	RUNOTT	Dogs	Cattle	Horses	Goats	Deer	Geese	Hogs	
SW1	SW1- SB/Little San Bernard River	8	0	11	2	23	17	11	28	0	16	16
SW2	SW2- SB/East Bernard Creek	8	8	12	8	21	24	18	18	1	13	17
SW3	SW3- Middle Bernard Creek	2	0	6	1	10	5	5	7	10	8	6
SW4	SW4- West Bernard Creek	8	2	19	12	15	10	20	11	74	18	11
SW5	SW5- SB/Snake Creek	16	21	15	11	7	13	8	9	6	15	15
SW6	SW6- Peach Creek	5	0	8	7	6	4	8	5	0	5	4
SW7	SW7- SB/Cedar Creek	9	9	7	9	6	8	8	7	1	10	7
SW8	SW8- Mound Creek	5	0	3	2	3	6	5	3	0	4	5
SW9	SW9- SB/Upper Tidal	34	60	18	45	6	13	16	11	0	9	11
SW10	SW10- SB/Lower Tidal	4	0	2	4	1	1	1	1	8	1	1

	NLDC 2006 COMPOSITION PER SUBWATERHSED (%)										
SUBW.	SUBWATERSHED	OSSFs	WWTP	Urban Runoff	Dogs	Cattle	Horses	Sheep/ Goats	Deer	Geese	Hogs
SW1	SW1- SB/Little San Bernard River	2	0	6	2	71	0	4	1	0	14
SW2	SW2- SB/East Bernard Creek	2	0	7	8	65	0	6	1	0	11
SW3	SW3- Middle Bernard Creek	1	0	6	1	65	0	4	1	6	16
SW4	SW4- West Bernard Creek	1	0	9	11	40	0	6	0	19	14
SW5	SW5- SB/Snake Creek	5	0	13	18	35	0	5	1	3	21
SW6	SW6- Peach Creek	3	0	11	19	47	0	7	1	0	12
SW7	SW7- SB/Cedar Creek	4	0	8	20	41	0	6	1	1	19
SW8	SW8- Mound Creek	6	0	8	8	50	0	9	1	0	18
SW9	SW9- SB/Upper Tidal	7	0	10	47	20	0	6	0	0	8
SW10	SW10- SB/Lower Tidal	7	0	8	35	16	0	4	0	21	9

FORECAST MODELING RESULTS

2006 NATIONAL LAND C							
SOURCES	2010	2015	2020	2025	2030	2035	2040
OSSFs	3.3%	3.2%	3.1%	2.7%	2.2%	1.6%	1.1%
WWTPs	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%
Urban Runoff	8.4%	7.3%	5.9%	4.2%	2.7%	1.6%	0.9%
Dogs	16.0%	14.5%	12.3%	9.6%	6.9%	4.6%	2.8%
Cattle	47.5%	41.3%	32.7%	23.2%	14.7%	8.4%	4.6%
Horses	0.2%	0.1%	0.1%	0.1%	0.0%	0.0%	0.0%
Sheep/Goat	5.5%	4.8%	3.8%	2.7%	1.7%	1.0%	0.5%
Livestock	53.2%	46.2%	36.6%	26.0%	16.4%	9.4%	5.1%
Deer	0.6%	0.5%	0.4%	0.3%	0.2%	0.1%	0.1%
Feral Hogs	13.9%	24.1%	38.5%	54.9%	70.2%	81.8%	89.6%
Geese	4.6%	4.0%	3.2%	2.3%	1.5%	0.9%	0.5%
Wildlife	19.1%	28.7%	42.1%	57.6%	71.8%	82.8%	90.2%

OSSFs - EC Potential Loadings

OSSFs - E. *coli* Loadings

- Highest loadings in subwatershed 9. Highest number of rural households.
- Increasing loading as result of increasing number of households in rural areas

WWTPs - EC Potential Loadings

- Highest loadings on the most urbanized subwatersheds
- No significantly contribution of WWTPs to the total EC loading
- Slight increase of loading as population grows in urban areas

Dogs - EC Potential Loadings

- Potential EC loading associated to number of households
- Increasing trend of potential loadings proportionally to population growth

Dogs- E. *coli* Loadings

Urban Runoff - EC Potential Loadings

Urban Runoff - E. *coli* Loadings (cfu day⁻¹)

•Same behavior as WWTPs loadings

•Loadings associated to % of impervious areas and event mean concentrations based on empirical relationships

•Slightly increase of loading as population grows in urban areas

Livestock EC Potential Loadings

Livestock - E. *coli* Loadings

•Distribution of loadings affected by land cover classification and counties livestock numbers

•Constant densities and reduced area for specific habitats lead to decreasing loadings over time

Wildlife - EC Potential Loadings

Wildlife - E. coli Loadings

•Wildlife (Feral Hogs and Deer) are distributed in the riparian areas around streams, forest and wetlands

•Feral Hogs highest contributor to wildlife loadings

•Increment in wildlife loadings controlled by rapid growth on Feral Hog population

FINAL COMMENTS

- The inclusion of a buffer zone around the streams showed reduction on rural loadings between 40 to 60%. The distribution on loadings showed a slightly change
- The use of number or rural households instead of OSSFs lead to increments on loadings from this source, but with no drastic changes in the relative contribution.
- The model does not account for mitigation processes such as settling, vegetative filtering , temperature, solar inactivation, or other biological factors that bacteria might undergo before reaching the stream. For this reason, SELECT should be coupled with a watershed model to simulate transport processes.

Thank you!

For more information contact: Norma E. Moreno (832) 681-2549 Norma. Moreno@h-gac.com

LAND COVER DISTRIBUTION

- Originally, 2008 H-GAC Land cover dataset was used. Overestimation of cultivated areas.
- Comparison different LCDs (2002 H-GAC, 2008 H-GAC, 2001 NLCD, and 2006 NLCD)
- 2006 NLCD was used.

Land cover Category 2001_NL	D 2006_NLCD	2002_HGAC	2008_HGAC
-----------------------------	-------------	-----------	-----------

Developed	5.4%	5.2%	1.4%	2.4%
Cultivated	32.9%	32.8%	22.7%	66.3%
Grassland	37.0%	37.4%	52.2%	10.2%
Forest	7.1%	7.1%	15.2%	4.6%
Woody Wetland	13.6%	13.2%	2.7%	11.6%
Herbaceous Wetland	3.2%	3.3%	4.0%	4.0%
Bare	0.2%	0.2%	0.5%	0.1%
Open_Water	0.7%	0.7%	1.4%	0.7%

Back

Census of Agriculture

COUNTY	Cattle	Horses	Sheep/Lambs & Goats
Brazoria	78560	5367	5841
Wharton	76780	1942	3591
Fort bend	46206	3105	1258
Colorado	98283	1897	1036
Austin	70184	3491	1930

Number of animals – Census of Agriculture 2007

HABITATS ASSIGNATION

SOURCE	2008 H-GAC LD Classification	2006 NLCD Classification
Cattle	Grassland/Shrub	Herbaceous + 90% of Hay Pasture areas
Horses	Grassland/Shrub	Herbaceous + 90% of Hay Pasture areas
Sheep&Goats	Grassland/Shrub	Herbaceous + 90% of Hay Pasture areas
Deer	Grassland/Shrub and Forest	90% of Hay Pasture areas+ forest (mixed decidious, and evergreen)
Hoge	3hogs/Km ² in bare LC	3hogs/Km ² in bare LC
nogs	5 hogs/Km ² in all other categories	5 hogs/Km ² in all other categories

METHODOLOGY

3. POTENTIAL E. *coli* LOAD ESTIMATION – According to EPA guidance

Source	Calculation E. <i>coli</i> Loading – EC (cfu*d ⁻¹)
WWTPs	EC = Self reported flow * 126cfu/dL* 10 ⁶ gal/MGD *3758.2 mL/gal
OSSFs	EC = # Failing systems*510 ³ cfu/mL*2.65 10 ⁵ mL/MGD * Avg.#persons/household
Dogs	EC = # households* 0.8dogs/household * FC loads/day-head * 0.5
Other animals	EC = # animals * FC loads/day-head * 0.5

