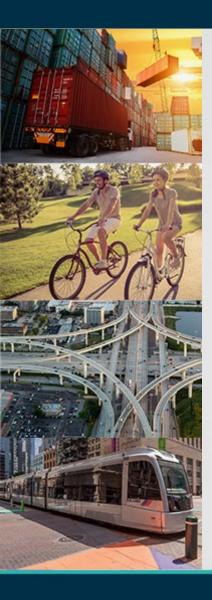

# Expanding Your Toolkit – AQ Analysis




Does your project contribute to reduction of NOx, VOC, or GHG emissions?

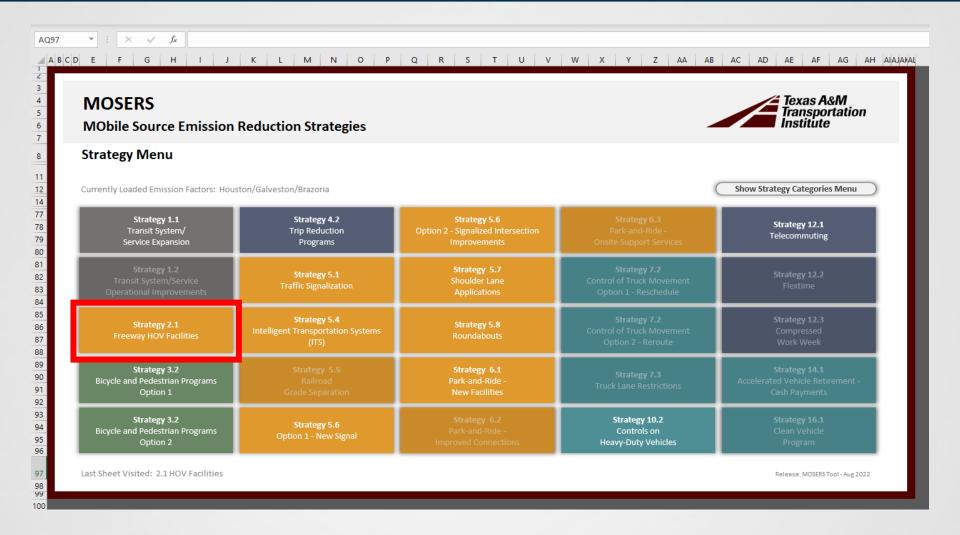
- Qualitative
  - This project's contribution to reductions in roadway volume and delay is expected to reduce idle time, thereby reducing emissions because...
- Quantitative (NEW)
  - MObile Source Emission Reduction Strategies (MOSERS)
    - Texas A&M Transportation Institute (TTI)
    - incorporates local Houston/Galveston/Brazoria emissions factors
  - Congestion Mitigation & Air Quality (CMAQ) Emissions Calculator
    Toolkit
    - Federal Highway Administration (FHWA)
    - incorporates national emissions factors
- Both tools use Excel to calculate AQ impact.
- These are not H-GAC developed tools.



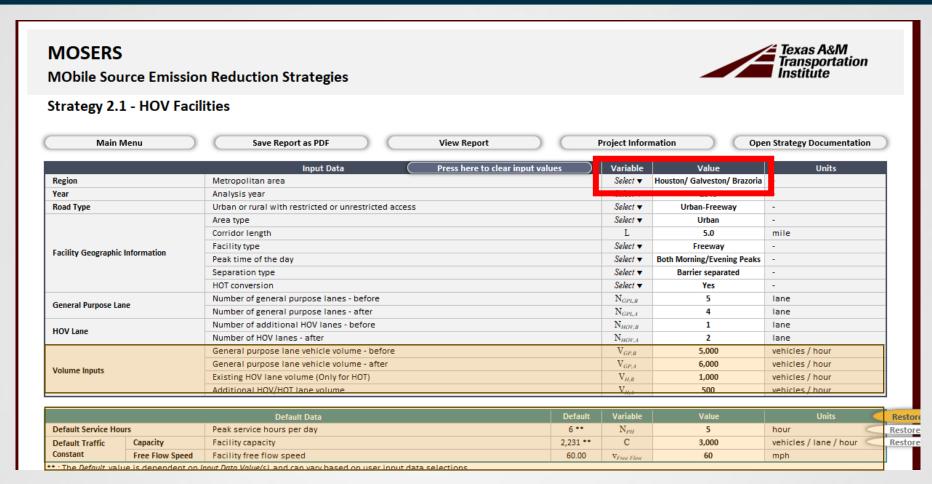
## Use Cases for MOSERS & CMAQ Tools



#### **MOSERS**


- Transit System/Service Expansion
- Freeway HOV Facilities
- Bicycle and Pedestrian Programs
- Trip Reduction Programs
- Traffic Signalization
- Intelligent Transportation Systems
- New Signals
- Signalized Intersection Improvements
- Shoulder Lane Applications
- Roundabouts
- Park-and-Ride New Facilities
- Controls on Heavy-Duty Vehicles
- Telecommuting

#### **CMAQ**


- Adaptive Traffic Control Systems
- Alternative Fuel Vehicles and Infrastructure
- Bicycle, Pedestrian, and Shared Micromobility
- Carpooling and Vanpooling
- Congestion Reduction and Traffic Flow Improvements
- Diesel Idle Reduction Strategies
- Diesel Truck and Engine Retrofit & Replacement
- Electronic Open-Road Tolling
- Electric Vehicles and EV Charging Infrastructure
- Freight Modal Shift
- Managed Lanes
- Telework Tool
- Transit Bus Upgrades & System Improvements
- Transit Bus Service and Fleet Expansion



## MOSERS Tool - Main Menu



# MOSERS Tool – Input (HOV Facilities)



Volume, Capacity, and Free Flow Speed data available from H-GAC's transportation modeling group

# MOSERS Tool – Input (HOV Facilities)

|                                 |                 | Input Data Pre                                        |  |  |  |  |
|---------------------------------|-----------------|-------------------------------------------------------|--|--|--|--|
| Region                          |                 | Metropolitan area                                     |  |  |  |  |
| Year                            |                 | Analysis year                                         |  |  |  |  |
| Road Type                       |                 | Urban or rural with restricted or unrestricted access |  |  |  |  |
| Facility Geographic Information |                 | Area type                                             |  |  |  |  |
|                                 |                 | Corridor length                                       |  |  |  |  |
|                                 |                 | Facility type                                         |  |  |  |  |
|                                 |                 | Peak time of the day                                  |  |  |  |  |
|                                 |                 | Separation type                                       |  |  |  |  |
|                                 |                 | HOT conversion                                        |  |  |  |  |
| 0                               |                 | Number of general purpose lanes - before              |  |  |  |  |
| General Purpose Lan             | e               | Number of general purpose lanes - after               |  |  |  |  |
| HOV Lane                        |                 | Number of additional HOV lanes - before               |  |  |  |  |
| HOV Lane                        |                 | Number of HOV lanes - after                           |  |  |  |  |
|                                 |                 | General purpose lane vehicle volume - before          |  |  |  |  |
| Malaura Innustr                 |                 | General purpose lane vehicle volume - after           |  |  |  |  |
| Volume Inputs                   |                 | Existing HOV lane volume (Only for HOT)               |  |  |  |  |
|                                 |                 | Additional HOV/HOT lane volume                        |  |  |  |  |
|                                 |                 |                                                       |  |  |  |  |
| Default Data                    |                 |                                                       |  |  |  |  |
| Default Service Hours           |                 | Peak service hours per day                            |  |  |  |  |
| Default Traffic                 | Capacity        | Facility capacity                                     |  |  |  |  |
| Constant                        | Free Flow Speed | Facility free flow speed                              |  |  |  |  |

# MOSERS Tool – Output (HOV Facilities)

| Calculated Data         |             |                                                      | Variable                | Value   | Units  |
|-------------------------|-------------|------------------------------------------------------|-------------------------|---------|--------|
| General Purpose<br>Lane | V/C Ratio   | General purpose Iane V/C ratio - before              | $V/C_{GP,B}$            | 0.33    | -      |
|                         |             | General purpose Iane V/C ratio - after               | $V/C_{GP,A}$            | 0.50    | -      |
|                         | Speed       | General purpose lane speed - before                  | $\mathbf{v}_{GP,B}$     | 60.0    | mph    |
|                         |             | General purpose lane speed - after                   | $\mathbf{v}_{GP,A}$     | 60.0    | mph    |
|                         | Travel Time | Travel time under free-flow conditions               | TT <sub>Free Flow</sub> | 5.00    | minute |
|                         |             | General purpose lane travel time - before            | $TT_{GP,B}$             | 5.00    | minute |
|                         |             | General purpose lane travel time - after             | $TT_{GP,A}$             | 5.00    | minute |
|                         | VAAT        | Daily peak hour general purpose lane VMT - before    | $VMT_{GP,B}$            | 125,000 | -      |
|                         | VMT         | Daily peak hour general purpose lane VMT - after     | $VMT_{GP,A}$            | 150,000 | -      |
| HOV Lane Spe            | VMT         | Daily peak hour HOV lane VMT - before (Only for HOT) | VMT <sub>H,B</sub>      | 50,000  | -      |
|                         |             | Daily peak hour HOV/HOT lane VMT - after             | VMT <sub>H,4</sub>      | 12,500  | -      |
|                         | Speed       | HOV lane speed - before (Only for HOT)               | $V_{H,B}$               | 37.2    | mph    |
|                         |             | HOV/HOT lane speed - after                           | $v_{H,A}$               | 60.0    | mph    |
|                         | Travel Time | HOV lane travel time - before (Only for HOT)         | $TT_{H,B}$              | 8.07    | minute |
|                         |             | HOV/HOT lane travel time - after                     | $TT_{HA}$               | 5.00    | minute |

| Activity Output Data                   |                  |                                                            |                     | Value  | Units |
|----------------------------------------|------------------|------------------------------------------------------------|---------------------|--------|-------|
| Peak Hour Summary                      | /                | Number of peak hours (AM and/or PM)                        | N <sub>PH</sub> 5   |        | hour  |
| Facility Length Length of HOV facility |                  | Length of HOV facility                                     | L                   | 5.0    | mile  |
|                                        | Snood            | General purpose lane speed during peak hours - before      | $\mathbf{v}_{GP,B}$ | 60     | mph   |
|                                        | Speed            | General purpose lane speed during peak hours - after       | $\mathbf{v}_{GP,A}$ | 60     | mph   |
|                                        | Peak-hour VMT    | VMT on general purpose lanes during peak hours - before    | $VMT_{GP,B}$        | 125000 | •     |
|                                        | reak-lioui vivii | VMT on general purpose lanes during peak hours - after     | $VMT_{GP,A}$        | 150000 | -     |
|                                        | Trip Reductions  | Number of vehicle Trips Reduced                            | $VT_R$              | 500    | -     |
| HOV Lane<br>Summary                    | Peak-hour VMT    | VMT on HOV lanes during peak hours - before (Only for HOT) | $VMT_{H,B}$         | 50,000 | -     |
|                                        |                  | VMT on HOV lanes during peak hours - after                 | $VMT_{H,A}$         | 12,500 | -     |
|                                        | Speed            | HOV lane speed - before (Only for HOT)                     | $\mathbf{v}_{H,B}$  | 37     | mph   |
|                                        | эреси            | HOV lane speed - after                                     | $\mathbf{v}_{H,A}$  | 60     | mph   |

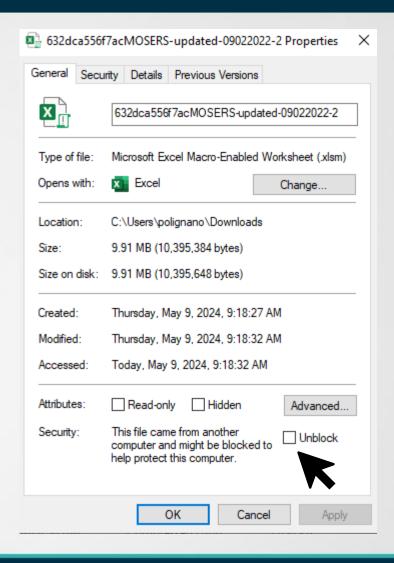

| Description               | Variable  | Pollutant       |       |                  |        |                 | 11-24-    |
|---------------------------|-----------|-----------------|-------|------------------|--------|-----------------|-----------|
|                           |           | NO <sub>X</sub> | voc   | PM <sub>10</sub> | co     | CO <sub>2</sub> | Units     |
| Daily Emissions Reduction | A - B + C | 0.588           | 0.688 | 1.372            | 19.589 | 4,136.891       | kg / day  |
|                           |           | 1.296           | 1.516 | 3.025            | 43.187 | 9,120           | lbs / day |
|                           |           |                 |       |                  |        |                 |           |

# MOSERS Tool – Output (HOV Facilities)

| Pollutant |       |                  |        |                 | Units     |
|-----------|-------|------------------|--------|-----------------|-----------|
| NOχ       | voc   | PM <sub>10</sub> | co     | CO <sub>2</sub> | Units     |
| 0.588     | 0.688 | 1.372            | 19.589 | 4,136.891       | kg / day  |
| 1.296     | 1.516 | 3.025            | 43.187 | 9,120           | lbs / day |

- Please submit estimates in kg/day. This matches the federal and regional reporting standards.
- A project's result is not final, in the sense that these projects are not final. Recognizing that each project could change substantially this result offers you and your project:
  - a useful baseline metric
  - a guidepost for planning over the lifecycle of the project
  - a first quantitative metric

## Pollutants - NOx and VOC



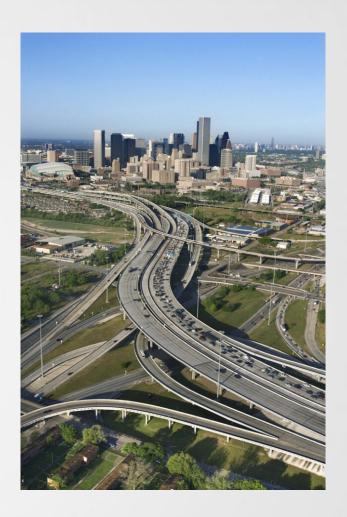

- NOx Nitrogen Oxides
- VOC Volatile Organic Compounds
  - Both are byproducts of combustion processes
- These are ozone precursors. They form ground level ozone when exposed to sunlight as ozone is not emitted directly into the air
- Reductions of NOx and VOC for roadway projects tend to appear low, especially in a kg/day metric.
- Ranges for reductions based on RTP projects could be very small. Emissions of less than 1.000 kg/day are quite common.



## MOSERS tool - Notes

- The Excel spreadsheet is downloaded from the internet. Microsoft and/or any agency or computer security may disable macros (necessary to run calculations and download emission factors).
  - Select Unblock and Apply
- The main menu will list: "Currently Loaded Emissions Factor:"
  - Default displays Dallas/Fort Worth
  - Once Houston/Galveston/Brazoria is selected within a strategy for the first time, it will list Houston/Galveston/Brazoria




### Contact Information

### MOSERS and CMAQ Tools & Troubleshooting

- Vincent Polignano, Data Specialist
  - Email: vincent.polignano@h-gac.com
- Andrew DeCandis, Manager Air Quality
  - Email: andrew.decandis@h-gac.com
  - Office Phone: 382-681-2589

Requests for data (i.e., volume and speed) & General RTP Process

- Stephen Keen, Senior Planner
  - Email: <u>stephen.keen@h-gac.com</u>
  - Office Phone: 713-993-4574

